

PUBLISHED BY TURRE PUBLISHING, A DIVISION OF TURRE LEGAL LTD.
Aleksanterinkatu 17, 6th floor, Helsinki, FI-00100, Finland, http:/ / pub.turre.com/

Copyright © 2005 Mikko Véliméaki
First Edition. Some Rights Reserved.

@creative
commons

This book is licensed under the terms of Creative Commons Attribution-NonCommercial-
NoDerivs 2.0 license available from http:/ / www.creativecommons.org/. Accordingly, you are
free to copy, distribute, display, and perform the work under the following conditions: (1) you
must give the original author credit, (2) you may not use this work for commercial purposes,
and (3) you may not alter, transform, or build upon this work.

ISBN: 952-91-8769-6 (printed)
952-91-8779-3 (PDF)

Printed in the Helsinki University Printing House.

Mikko Viliméki

THE RISE OF OPEN SOURCE LICENSING

A CHALLENGE TO THE USE OF INTELLECTUAL PROPERTY IN THE
SOFTWARE INDUSTRY

I

FOREWORD

This book is the result of my PhD studies at the Helsinki University of
Technology. I started working towards a doctoral degree right after
graduation from the University of Helsinki in 1999. I was supposed to
write a thesis in law. Now I need to apologize my then-supervisors profes-
sor Niklas Bruun and docent Pekka Timonen not to complete the thesis at
the law faculty in four years as was once planned. What happened was
that I met my future academic mentor, professor Jukka Kemppinen, who
had just started his professorship at the Helsinki University of Technology.
He convinced me to change my plans and my university in the late 1999.

The actual theme of this thesis started to emerge during my year at UC
Berkeley from 2000 to 2001. At that time I was working with Olli Pitkdnen
and we were supposed to study digital rights management. But I went on
and spotted open source. I was lucky to participate at some of the first
business and technology conferences ever that were arranged on the topic
in California. I concluded that this is the area I have the best knowledge of
and, besides, it doesn’t seem to be a fad that disappears in the next two
years. So why not write about it?

The main creative writing periods of this book were in October 2003 in
Berkeley libraries and cafes, and August 2004 in the Starbuckses of Santiago
de Chile. In addition, there were also those numerable nights when I com-
pleted separate articles, which form considerable subparts of this thesis. I fin-
ished the work by completing all the open and missing parts under the su-
pervision of professor Juha Laine.

Dissertation examiners professor Jukka Heikkild and Dr. Ilkka Rahnasto
made a number of substantial comments to a draft version of this book. I
have taken most of them into account. Professor Thomas Riis from Copenha-
gen Business School kindly accepted the invitation to act as the academic op-
ponent.

My understanding of open source has greatly benefited from discussions
with those who practice software business. As the public interest in open
source has grown, I have found myself lecturing and consulting open source
licensing to different organization from Finnish software companies to Inter-

v

American Development Bank. Special mention goes to Antti Halonen who
introduced me to MySQL before there was a company for that particular pro-
ject. Mérten Mickos, MySQL'’s CEO since 2001, has also been of help by giv-
ing constructive feedback and kindly sharing his connections.

Another bunch of special thanks go to my research colleagues Ville Ok-
sanen and Herkko Hietanen. In addition to several co-authored research pa-
pers, the founding of Electronic Frontier Finland in 2001 has definitely sharp-
ened my argumentation and overall writing skills. Through the association, I
have had the opportunity to participate into the public policy discussion on
copyright and patents from the inside.

I want to also thank Olga ja Kaarle Oskari Laitisen Sditio, Jenny and Antti
Wihuri Foundation, Helsingin Sanomain 100-vuotissdétio, Soneran tutki-
musséitio, Ella and Georg Ehrnrooth foundation and the Research Founda-
tion of Helsinki University of Technology for their grants supporting my re-
search work when that support was most needed.

Finally, thanks to my family, friends and colleagues not especially men-
tioned. There are just too many people I've met at universities, conferences,
business meetings and bars all around the world who have given their sup-
port and contribution in one way or other to this project. It makes me no
sense to list you all.

“Meet the new boss — same as the old boss.””
Lauttasaari, Helsinki, 30" March 2005

Mikko Vialimaki

" Final verse from The Who song Won't Get Fooled Again (1971). Lyrics by Pete Townshend.

TABLE OF CONTENTS

FOREWORD III
TABLE OF CONTENTS \4
ABBREVIATIONS IX
1INTRODUCTION 1
1.1 PROBLEM.....vitiuiiiietctiietetcncie ettt s st s bt es sttt s e n s seneas 1
1.2 TERMINOLOGY, PERSPECTIVE AND LIMITATIONSccovvveeeeeerrreeeeeeirreeeeeeerneeeeeeesereeenns 3
L3 METHOD ..ottt et a e as et a s 5
1.3.1 Rationale for Different Methods USed.............cccooveueueveicenieiiicieieieiceecc 5
1.3.2 Continuing Patterns in Business HiStorycocoovviviviviviniiniiiiiiiiiiiis 6
1.3.3 A1 ECONOMIC PerSPeCtiVe.......ccuvvviiiviiiiiiiiiiniciciiciicienictienceevc s
1.3.4 Comparative Law and Social Norms...
1.4 ACADEMIC CONTEXT AND SOURCES.......ccuiiiiteteniietereeitetesessiesesssessesesesss s seseneens

1.5 OVERVIEW OF THE STUDY ..eeeeuvtieeureeereeesereeestreesseesssseessseessssesssssesssesssssssssssssssssssssees

2 FROM PROPRIETARY TO OPEN: EVOLVING LICENSING MODELS IN

SOFTWARE INDUSTRY 13
2.1 SOFTWARE INDUSTRYcoceunnen
2.1.1 A Short Historical Overview
2.1.2 Market Size and REIONScccccvviiieeiniiieiiiiiieiiiiieeiieeec s
2.1.3 Emergence of Oper SOUTCEcoovvvviiivieiiiiiiiiiiiiiiiitt
2.1.4 Open Source and Software Business Models...............cccooooveveveiinueiiiccieae. 19
2.2 PROPRIETARY LICENSINGcoeveviiitiiiiinittii s 21
2.2.1 IBM’s Unbundling Decision and Corporate LiCensingccccocevvvrveannne. 21
2.2.2 Mass Markets Licensing and Shareware
2.2.3 Proprietary Licensing TOAAY............cccoovvivvieiiiiniiiiiniiiiisiciiisicicieicicis e
2.3 FREE SOFTWARE AND OPEN SOURCE LICENSINGcoovvviiiiiiiiiiiiiieesas 30
2.3.1 BSD License and Unix COPYTIGQHESccccvvvvvvuiiviiiiiiiiiiiiiiccscicccc 30
2.3.2 GNU General Public License, Linux and SCOcccoveevveeeveeeciieecieeaiieesireeans 33
2.3.3 Open Source Enters VOcabularycccoocccoivieecinieciiniciiiecieeee 36
2.4 SOCIAL AND POLICY DIMENSIONS OF OPEN SOURCEcvvuriiiiiiiiisisisiissnnnnas 40
2.4.1 Open Source and Individual EMpowerment..............cccooevvvveriivieriininiinnenninennn, 40
2.4.2 Community and Its CAMPScovuevevoieieeieiiiceeeeecee s 42
2.4.3 Ethical or Technical Goals?.......... .44
2.4.4 Influencing Political INSHEUFIONSccccovvieeeiiiiiiiiiiiiiiiiiiccccec 45
2.4.5 Practical Public Policy INGHAtIVESccovvviiiiiiiiiiiicv 46

2.5 CONCLUSION: EXPLAINING THE INCREASING ROLE OF OPENNESScccveeruveeevnenns 48

VI

3 ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS 50
3.1 ECONOMIC CHARACTERIZATION OF SOFTWARE PRODUCTSc.coveveviiiiiiiiieens 50
3.1.1 A Network EcOnomics APProachcoceeveveveeueueioiieeieieiceeie e 50
3.1.2 Software as an Economic GOOccccccoeeiniiniiniiciiiiiciieeeccses 51
3.1.3 Components and SYSEMScoevvvvieivivieiiiiiiiiiiiiiiii 54
3.1.4 Path Dependence, Lock-In and Network Effects.............cccccoovvivininininininiininnnn, 56
3.2 ECONOMICS OF SOFTWARE COPYRIGHT ...
3.2.1 Motivation of Developers............cccccvivvciiiiiciiiiiiiieiiiiiiciicisecs s
3.2.2 Investors and INCENETVLScceuivivieieiiiiiiiiiiciicccicecc s
3.2.3 C05ts Of COPYING.vvviriiriiiiiiiiciciiieiciietetetet ettt
3.2.4 Optimal Limits of COPYFigQht........ccocovivvvininiiioiiiiiiiiiiisiiiiiciiiisiiiisecie e
3.2.5 Compensation MeCHATISINSc.cccvveiiiiiiiiiiiiiiiiiiiiciciccsecs s
3.2.6 Is Software Copyright INEfficient?cccoovoeueueiiicnieiciieeeicee e 67
3.3 ECONOMICS OF SOFTWARE INNOVATION AND PATENTS69
3.3.1 Innovation in the Software INAUSETYcccviviieciiiciiiieiiceecn 69
3.3.2 Difficult Relationship Between Innovation and Patents.............c.cccccoccvvvinnnnnne. 71
3.3.3 Patents as Strategic ASSEESccovuviviviviviiiiiiiiiiiii 73
3.3.4 Different Means to Appropriate INNOVALION. ..., 74
3.3.5 An Open Innovation Model................ccccccoiveiiniiniiiiniiiiiiiciicieccccs 75
3.4 COMPETITION POLICY AND THE LIMITS OF EXCLUSIVE RIGHTS........c.coevviiiniiinnnne 78
3.5 SUMMARY: ECONOMIC RATIONALE OF OPEN LICENSING
4 INTELLECTUAL PROPERTY AND ITS DISCONTENTS 82
4.1 CHALLENGE OF SOFTWARE PROTECTIONcoeiiiiniiriniieieneieeeieseesse s 82
4.1.1 Early Discussion and Practicecccccovviiviiniiiiiiiiiiiiccisieccccans 82
4.1.2 WIPQ'S PrOPOSAL......ocoovoiciiiiiiiiiciiiciiicictcietette ettt 85
4.2 COPYRIGHT AND ITS LIMITScvoviiiiiiiiiiniiieccec s 86
4.2.1 Software Enters Copyright LATW............cccccovveiiviiiiiniiiciiiicciiccccecs 86
4.2.2 Interoperability Debate87
4.2.3 Current Extent of Software Copyrightcooevovoivrieiiiccieeiccece 91
4.3 THE RETURN OF PATENTSoouiiiitiiiieiccectc s 94
4.3.1 United States Leadsccccoociiviiiciiiiiiiiiiiciiiccccciccccc 94
4.3.2 Europe FOIIOWSovoviiiiiiiiiiii 95
4.3.3 International PoLiCYcccoevviviiiiiiiieiiiiicieicccee e 98
4.3.4 Current Extent of Software Patents...............cccccocevvvciniiciiiniiciciiiiiiiiiccnn 99
4.4 TECHNICAL PROTECTION........cocveverennes
4.4.1 Early Copy Protection Systems
4.4.2 Anti-Circumvention LegiSIationcccccccovvievciiniicciniicciiieeccceean 102
4.4.3 Is Technical Protection Effective?cccocovviviiiiiiiiniciiiiiiciiiiccicinan 103
4.4.4 The Promise of Trusted SYStEMScovvviiiiiiiiiiiiiices 104
4.5 ARE INTELLECTUAL PROPERTY LAWS OUT OF BALANCE?cevviiiiiriniinieiccinnes 105

4.5.1 Balancing Principle ..ot 105

4.5.2 Expansion TTendcccccceeiiiiiiiniiieiiieeiiceec e 106
4.5.3 Open Source as a Balancing FOTCe?cccocoivieioiieciniiiiiiiieciieean 109
4.6 CONCLUDING REMARKS: AN OPEN PERSPECTIVE ON INTELLECTUAL PROPERTY ... 111

5 OPEN SOURCE LICENSES AS ALTERNATIVE GOVERNANCE MECHANISMS

113

5.1 BARGAINING IN THE SHADOW OF INTELLECTUAL PROPERTY LAW113
5.1.1 What Makes a License Open SOUTCE?.............cccviviveiiiiiciiiiiiciiiieciiiean 113
5.1.2 What Is Not Required?cccoovviviiiiniiiiiiiiiiiiss s 114
5.1.3 Enforcing an Open Source Bargaincoovovevvvvvivicinnnnccnccinnans 116
5.1.4 Licenses CAteQOTIZEccvrieueuiuiiiiieiiiiieeiieeecec s 117
5.1.5 Popularity of Open SoUrce LICONSes...............cccviviiiriiiiiiiiiiiiiiiccisiieciciieianans 121
5.1.6 A Framework for License ANALYSis..............covurveroicueieiivceeieieiceeseccee 123
5.2 GNU GPL AND STRONG RECIPROCITY 124
5.2.1 Derivative Works in Copyright LAtcccccovvvcininciiniiiiiiiccicceen, 124
5.2.2 Derivative Works and GPL.............cccccocooviiiiiiiiiiiiiiiiiciciccccce 130
5.2.3 Patents and GPLccccoeciniieiieiceeeeeee s 139
5.2.4 GPL and License Compatibilitycccccoovvviiniiniiiiiciiiiicciieccccean 140
5.2.5 Other Licenses with Strong ReciproCity............ccccccvcveivieciiiniciciiiiciciiennns 142
5.3 GNU LGPL AND STANDARD RECIPROCITYccvoviviuiniinieniinieiencenissencseseiesensnenes 146
5.3.1 LGPL Functionality.............cccocvvveverennnnns ... 146
5.3.2 Other Licenses with Standard Reciprocity 148
5.4 BSD AND PERMISSIVE LICENSES151
5.4.1 BSD Functionalityccccoevvveivioioiiiiiciiiiiiiiiiiit 151
5.4.2 Other Permissive LICOMSESccoueuieeiniiieiiiiaiiieiiiiieeiiieisect e 152
5.5 EXCURSION: CREATIVE COMMONS OPEN CONTENT LICENSESccooeveveverereienenen. 154
5.5.1 BACKTOUNA ...ttt 154
5.5.2 Creative Commons FUunctionalityccoovvviviiiiiiiiiiiiiiiiines 155
5.5.3 Risk Allocation and Warranties...............cccocccocvveciinincciniinciiieecieeean 158
5.5.4 Internationalization and Formalities... ... 159
5.5.5 Concluding REMArKSccoooviiviiiiiiiiiiiii s 161
5.6 SUMMARY: COMPETITION BETWEEN EVOLVING LICENSING STANDARDS............... 161

6 DEFENSE WITH OPEN SOURCE: INFRINGEMENT RISK MANAGEMENT AND

PATENTS 164

6.1 HOW TO MANAGE IPR INFRINGEMENT RISKS?......coviiiiiiiiiiiiesseaes 164
6.1.1 Background

6.1.2 Nature of Third Party IPR Infringements..............ccccoceceveeivecininncioineccnns 166

6.1.3 Alternatives t0 Manage RisKSccccccovviiiniieiiiiiiiiiiiiieiiiiicicei 169

6.1.4 Actual Management PTaCICEScccoeviveviiiieriiiieiiicieicicieiciseee 174

6.1.5 Concluding RemMArkscoveueuevovieeieiiiceieeicce s 178

VIII

6.2 PATENTING PROBLEM AND POSSIBLE POLICY SOLUTIONS.......ccccveeereeenereeereennneenns 179
6.2.1 BACKGTOUNG ... 179
6.2.2 Open Source Licenses and Infringement Riskccccoccevivviiiiiiiiiiininnns 180
6.2.3 Development Process from Patenting Perspective...........cccooevueveiovcucrevennnnn. 182
6.2.4 Policy Debate on Open Source and Patentsccccccevvvciiiniccniieccnnnas 183
6.2.5 Liability Exceptions for Open SOUTCE?cccccviviviiiiiiiieiiiiiiciiiieecan 185
6.3 CONCLUSION: IPR LAWS CAN BE TUNEDooctieiiiiieiieieeieeie e eie e eve e 186
7 OFFENSE WITH OPEN SOURCE: CASE STUDIES ON LICENSINGcccu.... 188
7.1 LICENSING OPEN SOURCE FOR PROFITccccviieuieeireeetreesreeeereesseesssneesseesssseenns 188
7.1.1 Product Pricing POSSIDITHES.............cccovvueueuiiiiciciiiieiciiieeecee e 188
7.1.2 Problem of Development COREYOL...........ccccviviiiiiiiiiiiiiiiiiiiiicccccics 189
7.2 CASE STUDY 1: FREE LICENSES AND OPERATING SYSTEM SOFTWAREcccuueen. 192
7.2.1 Introduction
7.2.2 Market Overview
7.2.3 Study Frameworkccooveviviieiiiiviiiiiiiiiiiiiisiitetceeteeeee e 195
7.2.4 Microsoft WIRAOWSco.ceveviieiieiiiccie e 196
7.2.5 Apple OS X.oovoiiiiiiiiiiiicieisiceie e 200
7.2.6 GNU/LINUX DiISEFIDULIONS c..eeveveeeeeeeeeeeeeeeeeeeeseeeeee e reeeeeeeeeseeseeeseeseesanenas 202
7.2.7 Concluding Remarksccccovoivivieiviiiniiiiiniciiiiciiiiciectce 204
7.3 CASE STUDY 2: DUAL LICENSING AND EMBEDDED SOFTWARE206
7.3.1 How Dual Licensing WOrks?ccccocecvvoiinncniincnninas .206
7.3.2 Study Framework 208
7.3.3 Sleepycat SOftWAre INC.c.c.vovvvieiiiiiciiiiiciiicicicicccee 209
734 MYSQL AB ..ot 211
7. 3.5 TEOUTECH AS oottt ettt sa s 212
7.3.6 When Does Dual Licensing Make Sense?ccccccocovvivnneiiinciniiiinannn, 214
7.4 CONCLUDING REMARKSoceeiuiieeiieeiieeeieeeetreeeteeessseessseessseessseesssesssssesssesanssesnns 216
8 CONCLUSIONS 218
8.1 THE RISE OF OPEN SOURCEvvteeutieeureeereeensreenueessseessssesssesssssessssesssssessssessssseenns 218
8.2 IMPACT ON LICENSING PRACTICESuvvtievteenirienieeenreeaieeesseessereesseesssseessseesseesens 219
8.3 IMPACT ON INTELLECTUAL PROPERTY MANAGEMENTcceeviiiieeeeiirieeeeeinneeeeenns 221
8.4 IMPACT ON COMMERCIAL REGULATION AND LEGAL STUDYcveeeveeeiireeevieeneneenns 222
FIGURES AND TABLES 225
REFERENCES 227
ARTICLES, BOOKS AND REPORTSuvvviiiieiureeeeeiitieeeeeeeiteeeeeeessreeeeeesseeseseesssseessesssseeeens 227
NEWS, INTERVIEWS AND ONLINE-SOURCES.....cccccvteeruteerreearressressssreesssessssesssseessseenns 237
COURT CASES, OFFICIAL DOCUMENTS AND LICENSESccccvteiiieeiieeereeeetreeereeeeaneens 245

INDEX 249

IX

ABBREVIATIONS
BSA Business Software Alliance
BSD Berkeley Software Distribution
CcC Creative Commons
CPL Common Public License
CP/M Control Program for Microcomputers
EPO European Patent Office
EU European Union
FLOSS Free/Libre and Open Source Software
FSF Free Software Foundation
GNU GNU’s Not Unix’
GPL GNU General Public License
P Intellectual Property
IPR Intellectual Property Rights
IT Information Technology
LGPL GNU Lesser General Public License
MIT Massachusetts Institute of Technology
MPL Mozilla Public License
MS-DOS Microsoft Disk Operating System
OSsD Open Source Definition
OSI Open Source Initiative
OSL Open Software License
0ss Open Source Software
PC Personal Computer
TC Trusted Computing
us United States
USPTO United States Patents and Trademark Office
W3C World Wide Web Consortium
WIPO World Intellectual Property Organisation
WTO World Trade Organisation

GNU is a recursive acronym.

INTRODUCTION e 1

1 INTRODUCTION

1.1 Problem

MOUNTAIN VIEW, Calif. (February 23, 1998) - Netscape Communica-
tions Corporation (NASDAQ:NSCP) today announced the creation of
mozilla.org, a dedicated team within Netscape with an associated Web site
that will promote, foster and guide open dialog and development of Net-
scape’s client source code. “Netscape is the first major company to exploit
the power of the open source strategy,” said Eric S. Raymond, open-source
developer and advocate. “Making their client software source code free to

Vi

developers is a bold move that will do great things for their products.

Craig Mundie, Microsoft CTO, May 16, 2001: “When comparing the
Commercial Software Model to the Open Source Software model, look care-
fully at the business model and licensing structures that form their founda-
tions. This comparison leads to the conclusion that the commercial software
model alone has the capacity for sustaining real economic growth. Intellec-
tual capital has always been, and will remain, the core asset of the software
industry, and almost every other industry. Preserving that capital—and
investing in its constant renewal —benefits everyone.”

This book is a study on how open source has challenged the thinking
and actual use of intellectual property in the software industry. The emer-
gence of open source software and the rapid expansion of the Internet
have brought new software licensing practices to mass markets. For a
short time at least, new entrants have challenged incumbents in the ex-
panding software markets with the help of innovative copyright licensing
strategies and courageous anti-patent policies.

! Excerpt from Netscape’s press release mentioning term “open source” for the first time. See
Netscape (1998).

* This was the message when Microsoft tried to push their share source initiative to compete
with open source. See Mundie (2001).

INTRODUCTION e 2

GNU/Linux operating system, Apache web server and MySQL data-
base are perhaps the best-known examples of open source software. On
their part, the biggest companies in the industry from IBM to Apple have
adapted to the changing environment with different open source licensing
and operation strategies. But not everyone is winning; Netscape lost its
market share despite the “bold move” to open source strategy announced
in 1998. Also many other initiatives have had hard times to convince that
going open source can indeed be a viable business decision.

This draws us to the main questions of this study:

- Has open source changed licensing practices in the software industry
from a historical perspective? (chapter 2)

- Do the economic theories on software, copyright, and innovation
work with the principles of open source? (chapter 3)

- Does open source challenge the development of software copyright,
patents and other intellectual property laws? (chapter 4)

- What are the most relevant open source licenses and how are they
built on intellectual property law and economic theory? (chapter 5)

- How actual are patent and other intellectual property infringement
risks in the use of open source and how the potential risks can be de-
fensively managed at the social policy and individual firm level?
(chapter 6)

- Are there interesting industry cases where open source licensing
models have been used as competitive tools? (chapter 7)

The overall argument of the book is that open source licensing has indeed
changed the ways the software industry thinks of and actually uses intellectual
property. Almost all major software companies in the world have since
1998 started to adopt open source licensing models as part of their busi-
ness. Open source code and free copying and distribution models have
made inroads to the intellectual property licensing practices of industry
heavyweights. It may well be that in some application areas — such as the
basic Internet infrastructure software — there are no long-lasting mass
markets in the future for closed source code software products with re-

INTRODUCTION e 3

stricting licensing terms. However, it is very difficult to assess how fun-
damental and deep the change has actually been. In many sectors of the
software industry — such as custom software development and specific in-
dustry applications — open source is still a non-issue.

This book further argues that the implications of open source to the
management of intellectual property are twofold. First, intellectual prop-
erty infringement risks must be taken more seriously when open source
software is used. This is because open source increases the negative effects from
the continuous expansion of intellectual property rights. Second, “Internet-
businesses” are finally breaking through into software markets. This
means that the value of intellectual property increases from sharing but also be-
comes more complex to appropriate.

Finally, this book argues that open source can have relevant implica-
tions on intellectual property rights policy. First, openness balances com-
mercial requlation. Open licensing systems have proved how potential
drawbacks from overregulation can be fixed without state intervention. In
this way, open source also emphasizes a more material study of intellectual
property rights. When a substantial number of right holders in a given in-
dustry decide not to enforce their core intellectual property rights — relying
on economic-rational arguments — the premises of the policy discussion
can be seen in a new light. Why and how do companies do that? What
does it mean to the intellectual property system as a whole? Whether one
should hold to the government granted intellectual property rights to the
fullest is again a relevant question for any software developer and public
policy maker alike.

1.2 Terminology, Perspective and Limitations

The main objective throughout this book is intellectual property rights
(IPRs). They can be defined as government-granted limited — both in term
and scope — monopolies (or privileges) to govern certain uses of software.
This limited-monopoly definition assumes implicitly that the rights can’t
be omnipotent but must be balanced somehow. For practical matters, the
discussion is limited to copyright (governing “works”) and patents (gov-
erning “innovations”). In more formal legal literature, terms “the copy-

INTRODUCTION e 4

right protection of computer programs” and “computer implemented in-
novations” are commonly used. This books uses however more general
terms software copyright and software patents when we speak of copyright
and patents as applied to computer programs. Such terminology is also
more common in economics and other social sciences literature.

Software licenses are contractual documents, which define how copyright
and patent rights are used. A licensor is typically a software developer
(software company) who licenses more or less of these rights to licensees. A
licensee can be either another developer or end-user. Term open source is
defined as a set of software licenses, which follow certain criteria further
defined in Open Source Definition. Thus, this book studies how software
companies apply intellectual property laws with open source licenses. —
With proprietary software and licenses, this book refers generally to every-
thing else but open source. This should not be seen as a clear-cut categori-
zation, however. There are many proprietary licenses, which fulfill some
of the criteria of open source (e.g. the sharing of source code, no copyright
or patent royalties) but not all.

Software industry refers in this book to companies, which offer business
software products for server and desktop computers. Specifically, it refers to
those parts of the industry where open source licenses are being used ex-
tensively. It is obviously not possible to assess licensing practices and im-
plication within the industry as a whole. Thus, for example, specific issues
with computer games and embedded systems are largely omitted.

There are two leading perspectives in this book:

- First is that of a software developer — typically a software company.
Since licensing is essentially one of the operative functions of any
software company, it is natural to discuss how open source impacts
licensing practices. Further, the developer perspective often fits well
with the views of small or medium sized companies, or other inde-
pendent ventures, whose entire business somehow depends on the
licensing decisions.

- Second is that of a public policy maker. The general implications from
changing licensing practices are inherently public policy questions.

INTRODUCTION e 5

This study identifies implications to the regulation of copyright and
patents as well as intellectual property management within software
companies.

In short, this book sees intellectual property rights “in action”. The se-
lected perspectives necessarily limit the focus to some extent. For example
the descriptive discussions on the historical evolution and (static) legal
concepts of software copyright are in the end only supportive to the main
theses of the book.

1.3 Method

1.3.1 Rationale for Different Methods Used

Chapters 2-4 build a theory of software licensing from historical, eco-
nomic and legal perspectives. In the second chapter, the discussion draws
from business history explaining the role of open software licenses in the
software industry. In the third chapter, the economic theories on networks,
copyright, patents and innovation are described and the role of open
source licensing models within the theory discussed. In the fourth chapter,
the method is mainly legal history describing how the legal protection of
software has been developed and interpreted up to present day.

Rationale for this three-tier approach (history, economics and law) is an
assumption that to fully understanding the impact of open source licens-
ing one needs to be aware of a number of factors that software developers
consider for licensing decisions. In addition to purely economic argu-
ments, there are significant legal ramifications that determine available li-
censing options. And above all this, there are ideological, philosophical,
historical, technical and social facts that may be decisive in some contexts.
Simply put, a one-eyed view to the phenomena of open source software
licensing would be filled with half-truths and errors.

Still, one needs to ask: why do we discuss different approaches in one
study. Why don’t simply delineate the problem under study so that for ex-
ample only the legal nature and legal analytics of the licenses would be
studied? Again here, it is assumed that such a separate study would have

INTRODUCTION e 6

less practical and historical importance than the one that would mix the
knowledge from different fields of study.

1.3.2 Continuing Patterns in Business History

A few remarks on the method of the historical analysis practiced in this
book. In historical research, this book stresses the role of continuing social
patterns and processes over unique events. For example, the breakthrough
of open source in the late 1990s had its roots in the communities of early
computer hobbyists of 1960s. With necessary environmental changes, such
as the growth of the Internet as a communication platform and shift in en-
terprise computing from mainframes to cheap microcomputers, open
source code and the ideas of sharing and communities returned and took
over.

There are substantial similarities in our analysis to the triumph of open
source to Chandler’s approach to the business history of electronics and
computer industries of the 1900s as well as Christensen’s approach to the
patterns of technological innovation.’ First-movers and new innovators
have been repeatedly able to gain (temporary) market power in the soft-
ware industry until the proponents of new technological breakthroughs
and ideas have taken control. In this sense, open source can be seen as a
revolutionary new way of doing and distributing software in the new en-
vironment.

However, open source is not only a technological paradigm. It is even
more about the fundamental ways of how software is being socially devel-
oped and legally licensed. In these senses, the change open source has
brought to software industry seems, at least for now, more fundamental.
Technology arguably changes much quicker than social and legal norms.
Therefore, more emphasis is given to the social and policy dimensions
than in the more traditional studies of the industry history.* For instance
issues such as the emergence of development community norms and the

3 See Chandler (2001) and Christensen (1997).

* Lazonick (2003) points out the need to study how social and other institutional factors initiate
economic transformation in a given industry. His theory is based broadly on North’s (1981)
somewhat more abstract theory on institutional change and its effect on innovation and entre-
preneurship.

INTRODUCTION e 7

formation of a legal policy towards interoperability and software patents
are covered in this book with more detail.

Finally, in describing historical patterns one must be selective. It is obvi-
ously not possible to give a perfectly detailed account of all the events,
which combined lead to particular outcomes. There are many alternative
and convincing ways to tell the history of open source within the context
of software industry. The author has used here a kind of bottom-up ap-
proach: for instance the history of software licensing is seen from the per-
spective of individual developers and license authors. In the end, open
source licensing can be accounted to the ideas of individual programmers
and their previous licensing practices. Thus, the history of for example
shareware licensing in the 1980s needs more account than corporate soft-
ware licensing practices from that time.

1.3.3 An Economic Perspective

Economic analysis in this book can be best described to follow the so-
called pin-factory approach. In short, the aim is to understand how the
business and economics of open source licensing function in practice
through interviews and hands-on observations both in the real life and In-
ternet discussions archives. Then, the result is explained in the terms of
economics.’

Economic concepts used in the academic discussion on networks, copy-
right, patents and innovations are introduced and their applicability in
open source development discussed. An obvious challenge in this kind of
a descriptive approach is that many of these concepts are used in norma-
tive policy discussion such as the regulation software patents. The fact is
that many academics may have normative goals hidden in their argumen-
tation. That is the main reason why the discussion on economic concepts is
kept rather abstract.

Although this book discusses the economics of copyright and patents
among others, it should be clarified that the aim is not to follow a tradi-
tional law and economics approach. We accept that laws are always more

5 See Borenstein et al (1998).

INTRODUCTION e 8

or less inefficient. Further, it is useful to strive towards more social effi-
ciency through legal development only when the law is seriously out of
balance and when it can be enforced with relatively moderate costs. In
many cases there are alternative governance mechanisms to complement
the development of formal legal institutions.®

Thus, the main idea in this book is to study how open source licensing
privately balances “normal” inefficiencies in intellectual property regula-
tion and how licensing arrangements have perhaps caused different sorts
of inefficiencies in the software markets.” Also, we are interested in the
strategic and practical possibilities software developers have for reacting
to the economic implications of the existing laws. In this analysis, the game
theoretical models built in the economics literature of business strategy —
including the economics of networks and innovation — typically help out
in pointing out the relevant environmental features that affect individual
decision making.*

1.3.4 Comparative Law and Social Norms

Although most open source licenses have been written according to the
United States law, each one should be legally interpreted in the jurisdic-
tion the license is actually used. However, it must be stressed that the ac-
tual use of the licenses is flexible and extraterritorial — independent of pos-
sibly differing national legal interpretations. Distributed development and
free redistribution on the Internet do not stop at national borders or na-
tional laws. Therefore, this book has an international and comparative ap-
proach to legal analysis.’

% See e.g. Dixit (2004), pp. 1-14, presenting an overview of the approach he calls “lawlessness
and economics” or “economics in the shadow of the law”.

7 See also Epstein (1997), pp.1173-1174, who notes pessimistically that the economic analysis of
legal doctrines has been so thorough that there are significant risks of just repeating of what is
already known. Also advancing the research with more rigorous economic analysis has im-
plied that the results are harder to understand and thus less useful. Interestingly, Epstein goes
on to suggest that economic studies of law should focus to the evolution of particular institu-
tions and social arrangements “such as the evolution of telecommunications, public utilities...
and nonprofit organizations”.

¥ Shapiro (1989).

° For practical reasons, we limit the study mainly to the US and EU laws.

INTRODUCTION e 9

Following Mattei, we see the sources of law in a competitive setting.'’
There is no specific law on the rights to software and litigation on open
source licensing issues has been rare. Thus, the interpretation of licenses
should start from the principles of copyright and other intellectual prop-
erty laws and already developed case law on software licensing.

In addition, also the so-called community norms must be taken into ac-
count as a competitive normative source. They are manifested for example
in the ethical guidelines of the development community and lists of fre-
quently asked questions by license authors and community spokesper-
sons." From a narrow legal perspective, the community norms can be seen
as secondary norms reflecting the objectives of the licenses. In practice, the
factual community norms may affect the behavior of software developers
and users even more than formal laws and contracts. Potential reasons are
that the applicable legal rules on intellectual property rights and licensing
are unclear, developer communities form rather close-knit social networks
that voluntarily avoid legal disputes, and that the costs of law enforcement
on the Internet are high."

Linus Torvalds has said on the risk that Linux's GNU General
Public License (GPL) would not be honored: "My fears are mitigated
by reality. Somebody might do it for awhile, but it is the people who
actually honor the copyright, who feed back their changes to the
kernel and have it improved ... By contrast, people who don’t honor
the GPL will not be able to take advantage of the upgrades, and their

customers will leave them. I hope.”"

As noted, actual legal conflicts and continuing license violations have
been considerably rare taking into account the popularity of open source.
This has been credited mainly to proactive community self-control and ef-

10 Mattei (1997), pp. 104-105, makes a clear difference between legislation and legal rules. He
argues that legal rules are composed of any “legal proposition that affects the solution of a le-
gal problem” independent of its origin. Attempts to strictly classify and limit the sources of law
may lead to unrealistic views of the legal rules.

''See e.g. Debian Free Software Guidelines and Himanen (2001).

12 See Ellickson (1991), pp. 282-283. It must be noted that Ellickson studied the social norms of a
cattle rancher community so his results can be used only analogically.

B Torvalds and Diamond (2001), pp. 96-97.

INTRODUCTION e 10

fective mutual conflict resolution for example by stopping the distribution
of violating source code, rewriting violating parts or buying a proprietary
license." On these grounds, legal research in this book does not stop at
conservative risk analysis in chapter six but continues to investigate the
possibilities and business effects of the new innovative licensing tech-
niques in chapter seven.

1.4 Academic Context and Sources

There has already been published many books on open source from
technical, business and social science perspectives.” Hundreds of aca-
demic papers from different angles are readily available.'® There are also at
least three books specifically on open source licensing.'” Most of the book-
length material published on licensing so far is however rather practical
and sharply restricted to legal analysis. To contrast, the aim of this study is
to offer a comprehensive and academic, yet historically balanced and prac-
tically useful insight into the whole range of the open source licensing
phenomena.

While the aim can be criticized as broad, the book does have a focus. The
main academic tradition where this book can be connected to is the law and
economics of intellectual property rights. Historical and legal analyses ulti-
mately support the task of explaining how the growing popularity of open
source licensing affects (if it does) the industry practices of intellectual
property rights management.

Specifically, this book aims to contribute:

*See e.g. Shmitz and Castiaux (2000), pp. 33-34 and Moglen (2001b).

' For a technical book see e.g. Ferrel and Fizgerald (2002), business book see e.g. Fink (2003),
and social science book see e.g. Weber (2004).

' For example “Open Source Research Community” hosted at opensource.mit.edu posted 56
research papers (mainly economics and other social sciences) on their website during 2004.
Westlaw gives for the database “Journals & Law Reviews Combined” a total of 53 articles men-
tioning “open source” in their title; 25 of those were published in 2004. — As an anecdote,
scholar.google.com (including all sort of journal articles, conference proceedings, draft online
papers etc.) gives a total of about 2400 hits for articles, which have “open source” in their title,
in March 2005.

7 Rosen (2004) and St. Laurent (2004) can be described as practical “hint-books” written by
lawyers to developers while Metzger and Jaeger (2002) is a detailed legal analysis of open
source licensing in the context of German law.

INTRODUCTION e 11

- A business history perspective on the emergence of open source li-
censing as a pattern combining previous software licensing and de-
velopment practices

- More in-depth analysis of the key intellectual property issues in
open source licenses and their impact to software business

- New real world case studies on intellectual property risk manage-
ment and licensing practices in open source development

Main sources of the study are academic literature in the software indus-
try history, economics of software and intellectual property law on soft-
ware. In addition, relevant trade journals, magazines and online sources
are used to provide details for actual industry practices and commentary
on historical events. In the empirical parts of chapters six and seven the
data has been collected from interviews, questionnaires and available
market data and statistics.

Many studies on software industry start by stating that there is not
much previous research since the industry is still relatively young.' While
there is much true in this statement, it also undermines the amount of re-
search efforts done. Today it is not difficult to find recent research on
software industry starting from the industry history. The same can be said
about economics; the central concepts used in this study such as the eco-
nomics of networks, copyright, patents and technological innovation have
been under major study already from the 1960s. Also the legal issues re-
garding software protection aren’t new; the roots of modern software
copyright and patents discussion are also in the 1960s. And as noted, dur-
ing the last few years, the academic literature of open source has taken off.

1.5 Overview of the Study
The second chapter of the book describes the growth, size and segmen-

tation of the international software industry. We are especially interested
in how software has been sold and how open source and free software li-

'8 See e.g. Torrisi (1998) and von Westrap (2003).

INTRODUCTION e 12

censing has emerged to challenge established industry practices. We also
discuss the issues of licensing in the industry policy development.

The third chapter discusses the economic theories of networks, copy-
right, patents and innovation in the context of software products. All theo-
ries characterize different aspects of software products bearing some dif-
ferences but also many similarities. Aim of this chapter is to build a coher-
ent theory where open source software licensing models can be analyzed
within a larger economic context.

The fourth chapter discusses the evolution of legal and technical protec-
tion of software. Some commentators have criticized that the continuous
expansion of different overlapping intellectual property laws over soft-
ware has implied that the law is now substantially out of balance. We end
the chapter by reviewing the evidence and discussing the possibilities of
private balancing of intellectual property laws through open source.

The fifth chapter discusses how different open source licenses have
evolved in practice. Licenses are categorized and their functionality further
analyzed. Open interpretation issues as well as implications to software
business are identified. Finally, the chapter ends with a discussion on open
content, on how the techniques of open source licenses have been adopted
for use in other works of art than computer software.

Any use of open source in business environment includes legal risks. In
this chapter we discuss how software patents and other intellectual prop-
erty infringement risks can be managed at individual firm and social pol-
icy level. We start from the more general intellectual property rights in-
fringement risk management alternatives in open source development.
From there, the discussion is extended to the social problem of software
patents especially in the European policy context.

Finally, the seventh chapter studies how open source licenses have been
used offensively as a part of market-changing business strategy. First case
study is about operating system software markets and how open source
alternatives have changed the existing market structure during the recent
years. The second one describes a specific open source licensing model
called dual licensing and discusses how several start-up companies have
benefited from using it.

FROM PROPRIETARY TO OPEN e 13

2 FROM PROPRIETARY TO OPEN: EVOLVING LICENSING
MODELS IN SOFTWARE INDUSTRY

This chapter describes the growth, size and segmentation of the interna-
tional software industry. We are especially interested in how software has
been sold and how open source and free software licensing has emerged to
challenge established industry practices. We also discuss the issues of li-
censing in the industry policy development.

2.1 Software Industry

2.1.1 A Short Historical Overview

Software industry is an ambiguous concept. The industry is both young
and characterized by rapid technological development. The industry has
been shaped by numerous expansion times and technological paradigm
shifts during its less than fifty year history. Thousands of companies have
grown and disappeared. Today, only few companies that operated in the
1950s and 1960s have survived and most of the contemporary industry
leaders were founded less than thirty years ago.

Campbell-Kelly offers a useful taxonomy of software industry from his-
torical perspective. He identifies three major categories of software com-
panies based on their operating model: software contractors, corporate
software producers and mass-market software producers.

Category Software contractors Corporate software Mass-market software

(1950s -) producers (1960s -) producers (1970s -)
Companies SDC (1956) SAP (1972) Microsoft (1975)

CUC (1955) CA (1976) MicroPro (1978)

CSC (1959) Oracle (1977) Lotus (1982)
Business Projects Product tailoring, services License sales

Table 1. A historical taxonomy of the software industry™

¥ Campbell-Kelly (2003), p. 9

FROM PROPRIETARY TO OPEN e 14

In the first wave came software contractors. They established the soft-
ware industry in the 1950s selling large-scale software projects to the
United States government and largest corporations. In the 1960s the indus-
try slowly shifted towards software products and expanded to Europe and
other continents. After IBM, the industry’s “natural” monopolist, unbun-
dled software from hardware in 1969, the software product markets took
off. Many new software products companies were founded and the indus-
try expanded to serve a greater scale of users. Software services, training
and support were major income sources to software producers at that
time. What contractors and product companies had in common was that
they both served mainly the corporate market, which was based on main-
frame hardware.”

Personal computer revolution was the next turning point in the indus-
try. A new form of software business was mass-market software based
from the beginning on copyright license sales and minimal after-sale serv-
ices. This new part of the industry was in many ways disconnected form
the corporate software markets. Mass-market software markets expanded
rapidly in the “gold rush” of the late 1970s and early 1980s.”' In 1981 IBM
introduced its PC, which was based on open architecture meaning that
third party manufacturers were able to produce both software and hard-
ware.” PC became soon the dominant technology and helped the most
successful of the new entrants to grow to the heights of the corporate soft-
ware companies.

The focus of this study is on software producers. Since the late 1990s the
boundaries between the corporate and mass-market software producers
have started to some degree melt. Both the growth of Internet and the
emergence of open source products have catalyzed a process of building
the bridge between corporate and end-user markets. For example Micro-
soft, which has been a typical example of a mass-market software products

company, and Oracle, an archetype of a corporate software company,

% Campbell-Kelly (2003), pp. 118-119, 161-162.

! Campbell-Kelly (2003), p. 203.

According to Grindley (1995), p. 141, major reasons for open architecture were rush to mar-
kets, low-risk because of reliance in third party suppliers, and technical difficulties to protect
the complex standard. IBM did try to make BIOS chip design proprietary but third party
manufacturers soon circumvented it.

FROM PROPRIETARY TO OPEN e 15

compete today in corporate databases and personal computer applica-
tions.”

2.1.2 Market Size and Regions

It is difficult to estimate the size and importance of software products
markets today. In many ways, software has become invisible. Software can
be found in all kinds of products from cars to tennis rackets.” The figure
below shows further how the software markets in the United States has
been growing — save for a historical drop in 2002 — and is now valued at
well over $300 billion:

350 4

300 —

250 —1

200 — —1

bn$

150 +— —

100 +— —

1999 2000 2001 2002 2003

Figure 1. Total revenues from the top 500 US-based software companies.”

» Campbell-Kelly, p. 11.

2 Carr (2004) offers a critical view of the business impact of this commodification trend in the
IT industry at large: it is becoming harder to get any competitive advantage from merely using
certain kind of software if it is basically available to all.

» Collected from Software Magazine’s “Software 500” annual surveys between 2000 and 2004.
According to their methodology “Software revenue includes license fees, as well as revenue
from product maintenance and support and professional services. Revenue from training,
hardware sales, and peripherals are excluded.” See also The Economist (2001) for comparison.

FROM PROPRIETARY TO OPEN e 16

Most reliable estimates, such as European Information Technology Ob-
servatory, address around 30% of the markets to the United States and
around the same to the Western Europe with practically all major software
companies located in the US.*® There are many reasons for United States
dominance in the world software markets. Naturally, United States has the
biggest domestic markets while for example in Europe local languages and
other structural differences have made progress slower. Software devel-
opment is also closely tied to hardware and the leading hardware manu-
facturers have been US companies. IBM’s unbundling decision, which
opened software markets in 1969 affected the US markets first and gave it
a historical first-mover advantage as a nation. Industry hotspots such as
Silicon Valley sprang up linking together entrepreneurs, university re-
search, capital markets and other supportive services.” Software industry
in the United States has also enjoyed strong public support since 1950s
while in Europe the focus on national leaders specialized in hardware and
electronics. Also the legal development in Europe has followed that of the
United States in both intellectual property and competition law. Finally,
according to Torrisi’s study, US companies have been more product and
R&D specific than their European counterparts.®®

Also this study reflects the historical US dominance in the software in-
dustry. The fact is that the biggest software companies are based in the
United States and also licensing practices have been developed largely ac-
cording the US legal and business traditions. Thus, if open source licensing
and business models really challenge the software industry, the effects
should be clearly visible in the United States markets.

2.1.3 Emergence of Open Source

It is even more difficult to estimate the size of “open source software in-
dustry”. Pure open source companies are tiny and many of them are pri-
vately held. However, the popularity of open source is significant and
practically all big IT companies have today open source products and serv-

* European Information Technology Observatory (2004).
7 See e.g. Kenney (2000).
* Torrisi (1998), p. 155-156

FROM PROPRIETARY TO OPEN e 17

ices available. The open source market has grown in side with the expan-
sion of the Internet since open source products practically run the Internet.

Open source software has perhaps shaped most the markets of web
server software, which has become a new market for software products be-
tween personal computers and corporate mainframes. A software combi-
nation known with acronym LAMP (Linux, Apache, MySQL and
PHP/Perl) has been the first choice for many system integrators during the
recent years. IBM and Oracle for example sell Linux and Apache-based
server solutions; of course, Oracle may run their own database on top of it
and also IBM has its own database products.

Figures 3 illustrates the popularity of Apache web server, which also in-
dicates the popularity of open source software on web server markets:

TOE

=— Apache
= Hicrosoft
Sun
NEER
= Othar

352

¥

-

i

Seploas
Oecioas
Mar1995
Jund99g
Seploos
Deci99s
Mar1997
Junl9a?
Seplesy
Oecioa?
Mar1995
Junloes
Seploss
Oecloas
Mar1999
Junlseg
Sepless
Oecioaq
Mar2000
Jun2i
TR0
Qecig
Marz200L
Jun2iid
Sep2inl
Oecziol
Marz2002
Jungnz
Sep2ng
Qeczinz
Marz2003
Jun2ong
SEp200G
Oeczong
Marz200d
Junziiad
Sep2iid

Figure 2. Market share of web servers.”

Pie in figure 4 describes the different segments of web server market in
the early 2000s. It is possible to build a reliable web server using only open
source components.

* See Netcraft (2004) for a continuously updated survey based on over 40 million server sites.

FROM PROPRIETARY TO OPEN e 18

@ Operating system:
BSD*, Linux*, Solaris,
Windows

m Server software:
| Apache*, Microsoft IIS,
SunONE, Zope*

0 Database: Microsoft
SQL, MySQL*, Oracle,
PostgreSQL*

o Other components:

firewall, cluster, mail
server, scripting ...

Figure 3. Main web server software components in the early 2000s.”°

The popularity of open source illustrates how standardization and
commoditization in both hardware and software components have re-
sulted in disruptive innovative activity. Major steps in hardware innova-
tion have had implications to software innovation alike.” The fast growth
of networking equipment has implied rising demand to cheap, reliable
and secure platform software where dominant PC platform Windows has
not been suitable. Microsoft has been developing quickly its Windows NT
technology on that market. On the other hand, expensive corporate main-
frames with proprietary Unix platforms were not targeted to the low end
of the market where the fastest expansion of the Internet has happened.

However, popularity does not directly imply shares of revenue. Open
source is typically priced significantly lower compared to proprietary
products. According to an IDC, Microsoft’s share of all revenue generating
server shipments in 2002 was 55% while Linux held only 23%.%* These two
were the only server operating systems with a growing market share. IDC
also estimated that the total market revenue was around $18.6 billion.*®

¥ Products marked with star (*) are open source.

* Torrisi (1998), p. 154.

* According to IDC (2003), “Only paid software shipments, whether included with hardware
or shipped exclusive of hardware, are incorporated in the revenue shipment statistics.”

¥ IDC (2003).

FROM PROPRIETARY TO OPEN e 19

Also, open source has not been that successful in personal computer
desktop software so far. The market shares have not been changed much.
If one uses searches made on Google as an indicator, during June 2001 and
June 2004, a steady 1% of all searches came from computers using Linux as
the operating system. The market share of Mac OS has been around 3-4%
while other non-Windows operating systems gaining another 4%. The rest
of Google queries, that is over 90%, were made from computers running
Microsoft Windows.* There is also reliable open source software available
in major application software categories including office software (word
processor, spreadsheet, and presentation), web browsing and email but it
has proved difficult to get any relevant market share from the dominating
Microsoft products.”

2.1.4 Open Source and Software Business Models

Software business models used today can be distinguished from several
perspectives. For example, depending on whether the software is sold as a
product or service, structure of the sales channel, and income sources.*®
Table 2 identifies one possible classification used in the literature based on
four rather generic models:

* Information collected from Google Zeitgeist (2004). Google is currently the most popular
search engine on the Internet, which handled in early 2003 around 250 million queries per day
according to OneStat (2003a) report. Google Zeitgeist’s information on operating system mar-
ket shares is only indicative. For example OneStat (2003b) reported that among web users
Linux would have 0.5% share and Apple only 1.5% with over 97% going to Microsoft.

% OneStat (2004) reported that Microsoft Internet Explorer has over 93% dominance in web
browsers with open source based Mozilla engine (Firefox, Mozilla and Netscape browsers)
having a combined share of around 5%. Firefox is currently eating the market share of Expol-
orer after the release of Firefox 1.0 in November 2004. This is the first time since Mozilla went
open soure in 1998 that it has taken any relevant market share back from Microsoft’s Internet
Explorer.

% See Rajala et al (2001).

FROM PROPRIETARY TO OPEN e 20

Software_projects Software_publishing
Product focus Customer project Product family
Copyright Licensed or transferred Licensed with restrictions
Income One-time project fees License fees
Software subscription Commodity software
Product focus Parametrized product Core product
Copyright Licensed with restrictions Licensed with an open source license
Income Service fees and application rents Indirect from services, bundling, branding

Table 2. Generic software business models.”

Perhaps the most common way of software companies to do business is
to sell software projects. In this model, a company sells its programming
work as a service rather than the sole software. Project business is not
much different from a taxi service where more cars running (program-
mers) mean more money to be charged. For example large IT enterprises
such as IBM follow the project business model when they sell “system in-
tegration” services.”®

Next, the traditional model for software product business could be de-
scribed as software publishing. In this model, the software is licensed as if it
were sold as a physical product. Software publishing works in a somewhat
similar way to print publishers who sell physical books commoditized
from manuscripts. Microsoft has been a classic example here selling Win-
dows operating system and Office applications.

The Internet as usage environment and distribution channel has enabled
several new ways to do software business. Software subscription can be seen
as a combination of the two traditional models. Sometimes called as appli-
cation service providing, subscription is a more interactive way to sell
software as an online product with add-on services tailored to the cus-
tomer. Almost any software company selling software-based services on
the Internet such as online marketplaces can be classified following the
subscription model.

Finally, different commodity software business models have emerged.
Here, a core product or a standardized component is available free of

¥ Table edited from Rajala et al. (2001).
* Of course, large companies such as IBM do software business under several models projects
being just one of them.

FROM PROPRIETARY TO OPEN e 21

charge or with nominal costs. Most popular open source software products
such as Linux and Apache can be put into this category. By definition, all
sales in the commodity model are based on indirect means that leverage
the potentially large and dynamic user base. For example, add-on services,
bundled products and branding are essential indirect revenue sources.

Of course, any classification of software business models can be criti-
cized. One can for instance say with good grounds that there are just prod-
uct (licensing) and service business models.”® For example publishing and sub-
scription can be characterized just as different licensing models within the
general category of software product businesses. Table 2 above was based
on this simple categorization.

Where does open source fit into the picture? Clearly, open source does
not end in the commodity software business model as described in the
early literature. * As we will see, many large IT companies such as IBM,
HP and Novell selling software projects (services) use extensively open
source software components. Open source also allows software subscrip-
tion to a large extent. Most popular websites, be they commercial or not,
run basically on open source. Finally, we can identify open source compa-
nies selling traditional licenses in addition to the free offering and thus us-
ing the publishing model. Start-ups such as MySQL, TrollTech and Sleepy-
cat Software have pioneered with this approach.* The result is that open
source software can be combined into any popular software business
model. It is not meaningful to speak of open source software business as if
that would denote to a specific software business model.

2.2 Proprietary Licensing

2.2.1 IBM’s Unbundling Decision and Corporate Licensing

Before there were any separate markets for software, computer hard-
ware and software was sold together. Pugh traces this practice of bundling

¥ For example Cusumano (2004) builds his framework on software business on this distinction
between (licensed) products and services.

* Raymond (1997) was perhaps the first to analyze open source business models under the
commodity model.

I Their business model will be discussed in detail in chapter 7.3.

FROM PROPRIETARY TO OPEN e 22

back to Herman Hollerith who won the contract to tabulate US Census of
1890. Because his first customers did not know how the systems worked or
did not want any responsibility, it was natural to rent the equipment and
sell additional services. Hollerith’s company later became IBM and the
practice of bundling continued in the eras of Thomas J. Watson Sr. and Jr.*

IBM essentially bundled software with hardware and services. They
rented bundled software and hardware and sold additional support and
maintenance. In a way, software was free and there were no extra charges
to obtain IBM software. On the other hand, there were really no markets
for the software on any other platform than IBM computers. For the first
part of the century, IBM had a natural monopoly in the computer industry.

IBM announced the unbundling of its software from hardware in 1969
after series of internal studies. Unbundling was based on both competitive
factors and antitrust fears.” It was claimed that IBM used its monopoly
position against fair commercial practices. It offered free software and
services according to customer needs and had therefore advantage in win-
ning new customers. It was also claimed that IBM made it difficult to de-
velop interoperable systems and cut prices to hinder competition.* Inter-
estingly, after the unbundling decision hardware prices went down by
nominal 3% while many customers hoped for as much as 25% hardware
price reductions.*

Right after the unbundling decision, IBM took into use several licensing
models for selling software. They offered both one-time fees and site li-
censes. Watts S. Humphrey, then an IBM employee and involved in many
of the unbundling decisions, later explained how they came to trust on a
legally enforced licensing model instead of technical enforcement (copy
protections etc):

“While we thought that cryptography might be technically feasi-
ble, particularly with special hardware assists, every approach we

Pugh (2002).

A federal antitrust investigation against IBM’s practices in the computer industry was filed in
January 1969. The investigation wasn’t dropped until 1982.

* Grad (2002), p. 64.

* Humprey (2002), p. 61.

FROM PROPRIETARY TO OPEN e 23

could think of would have made it difficult for reputable customers
to use our programs. Large businesses often needed backup copies,
programs were frequently moved among machines, and IBM en-
couraged upgrading to larger systems. With cryptography, these ac-
tivities would all require IBM permission. We felt that this would be
impractical and inconvenient for users and expensive for IBM. We
also concluded that any single-machine locks and keys, or special
time-out and self-destruct programs, would be onerous to our best
customers and not effective against clever thieves. Because we could
not devise practical physical security measures, we had to rely on the
inherent honesty of our customers. Our hope was that legal protec-

tion and criminal prosecution would limit the piracy problem.”*

While undoubtedly important, the significance of IBM’s unbundling de-
cision should not be overemphasized. Most industry professionals agree it
was a necessary step leading to the birth of the software products industry
in the 1970s.*” However, it was just part of the story. According to Camp-
bell-Kelly, the major factors leading to the emergence of the software
products industry in the late 1960s were the increasing proliferation of
computer uses, increasing software development costs, lack of program-
mers, and the introduction of IBM’s standard pla’tform.48 On this back-
ground, software unbundling can be seen as a rational business decision in
the evident evolution towards software markets.

Following IBM’s policy change, software was sold as a licensed product
from the late 1960s. Already early license agreements regulated software
use in detail.* The legal basis for licenses was essentially trade secret and
contract law although also intellectual property rights were sometimes
mentioned (but not necessary claimed ownership upon).

* Humprey (2002), p. 60-61.

¥ Grad (2002), p. 71.

* Campbell-Kelly (2003), p. 89.

* For example Bigelow (1970) mentions that “...some contracts limit the number of central
processors on which the program can run or the number of copies of the program that can be
made”. He also points out an interesting fact that “ ...ownership can become particularly sticky
when the user improves the program, and wants to claim some rights in the improved ver-
sion.”

FROM PROPRIETARY TO OPEN e 24

For example first Unix licenses from the early 1970s mentioned
copyright, trade secrets and patents. The licenses were constructed
from an assumption that Unix and Unix source code were under a
trade secret and licensed under confidentiality. Further, the terms re-
stricted copying as any copyright license — however, without explic-
itly mentioning that the software could be covered by copyright. The
terms also stated that there is explicitly no patent or trademark li-
cense even if there would be patents or trademarks covering the
software and that there is no warranty for third party copyright, pat-
ent or trade secret infringement.”

2.2.2 Mass Markets Licensing and Shareware

Personal computer mass markets applied the publishing business model
of the recording industry. Software packages were sold as copies of the
original program. Popular books aimed at software developers explained
that copyright was the main legal tool to protect software from the nega-
tive effects of unwanted copying. In effect, intellectual property protection
grew in importance and licensing models became more and more restric-
tive banning e.g. backup copies and reverse engineering.

This wasn’t the whole picture, though. Mass markets also saw the rise of
shareware or “try-before-you-buy” licensing model in the early 1980s. The
first successful shareware programs were PC applications but later also
system tools and games were successfully distributed as shareware.” In
the early 1980s, it was basically possible to any competent individual to
write competitive simple programs for such basic tasks as text processing.
The only problem was that software publishing markets were still about to
form and publishers always took their share from revenues.

Shareware became perhaps the first licensing model where software was
distributed by end-users. Essentially, software was copyrighted but copy-
ing and distribution was allowed. However, to use the software for more

50'See Unix License (1974).

>! See Ford (2000) on the early history of PC shareware software. At first, shareware was called
freeware. Later, freeware became to mean software distributed in binary form for which the
author didn’t want any payment.

FROM PROPRIETARY TO OPEN e 25

than a certain time period or to receive additional features, the author
typically required users to pay a license fee for registered or full-feature
version. Also, source code didn’t follow with the program and modifica-
tion wasn’t allowed.

Shareware programs were spread first through bulletin board systems
and direct sharing among users. Later, mail order vendors appeared pub-
lishing lists of available shareware and charging little fees from disk pro-
duction. This low-end of the whole software product markets was very in-
tense. Nelson Ford, the founder of Public Software Library (PsL), one of
the first shareware distributors, later explained:

“While PsL and the high-volume dealers dominated the shareware
distribution market, during the late ‘80s, hundreds (if not thousands)
of small shareware vendors sprang up. With no real computer
knowledge or other expertise required, anyone with a few bucks
could buy shareware disks from another vendor, print out a “cata-
log”, and sell copies of those disks to others. Most of these “share-

ware vendors” sold at computer shows and flea markets.”*

The popularity of shareware slowly faded during the early 1990s on PC
markets. Only few companies made significant profit before most of their
software products became commoditized.” When for example Microsoft
bought or developed some essential shareware tool into its operating sys-
tem, the market for that shareware product eventually died. While new
shareware programs were continuously introduced, the success stories be-
came few and rare.”

52 Ford (2000).

% See Takeyama (1994) for some estimated return rates in the shareware industry in the early
1990s. Only very few products returned to their developer any significant income; however,
those few products may have been very profitable.

> Of course, there are many counterexamples. For example Paint Shop Pro, launched in the
early 1990s, was able to gain significant market share among bitmap image processing software
products.

FROM PROPRIETARY TO OPEN e 26

2.2.3 Proprietary Licensing Today

License restrictions and pricing. Traditionally proprietary software
companies have developed software in-house and used various kinds of
end user license agreements that give licensees limited rights to use the
software for specific purposes. The basic idea is to tie the license price with
usage restrictions.

Table 3 below lists some typically used restrictions, which may be based
on e.g. software itself, hardware environment, software users, or usage

characteristics:
Criteria Restriction type
Software Copies (e.g. one copy, one site)
Functionality (e.g. versioning)
Hardware Configuration (e.g. number of processors)
Computing power (e.g. transactions per second)
Users Number of users (e.g. floating, fixed)
Status of users (e.g. personal, educational)
Usage Transactions (e.g. number of functionality used)
Time (e.g. annual, perpetual)
Table 3. Typical proprietary license restrictions.
Revenue
Subscription Usage
e Upgrades
I
R
R
Time

Figure 4. lllustration of licensing models from revenue generation perspective over time.”

* Messerschmitt and Szyperski (2003), p. 329.

FROM PROPRIETARY TO OPEN e 27

In the economic literature software licensing models have been dis-
cussed under such topics as price discrimination and versioning. Products
can be differentiated and priced for example through release delay, quality
discrimination, upgrades, renting, and bundling.* Theoretically, price dis-
crimination maximizes the value from software use as each user pays ac-
cording to his individual valuation. Intellectual property rights — giving
software producers the exclusive rights for copying, distribution and
modification — provide the necessary legal backup for such licensing mod-
els.

Licenses versus services. Licensing fees (royalties) form only a part of
the total income of software companies. Even companies with licensable
and customer-installable products typically engage in after-sale services
and maintenance. It is therefore interesting to note that while different li-
censing models have been multiplied, average license prices have de-
creased in the long term.” At the same time, total revenues of software
companies have increased from both product licensing and other sources.
Thus, overall software usage must have increased very rapidly.

The following table further illustrates how the revenues of the world’s
largest software companies are shared between licenses/products and
services / maintenance.

* See Shy (2001), p. 182-184, and Varian and Shapiro (1999).

77 See Liebowitz and Margolis (2001), p. 154-157, noting especially that in those markets where
Microsoft has participated, license prices have dropped significantly. Short-term picture may
be more complex. Industry analyst firm Gartner recently warned that hardware-based corpo-
rate licensing costs are about to increase at least 50% partly because of evident changes in com-
puting architectures. See McCue (2004).

FROM PROPRIETARY TO OPEN e 28

Company Licenses / Services / Revenue in |Software products
Products Maintenance |millions
Adobe 98 2 1667 |Graphics, publishing
Symantec 98 2 1870|Security tools
Microsoft (1) 94 6 31521 |Operating systems, applications
[Oracle [79 21 10156 |Databases
[cA @ \ 69| 31| 3276/ Applications, middleware |
Siebel 36 63 1354 |Enterprise applications
SAP (3) 31 69 9768 |Enterprise applications
Novell (4) 26 74 1166 |Operating systems, applications
IBM (5) 25 75 61307 |Operating systems, applications etc

(1) MSN and Home Entertainment divisions omitted

(2) Licenses include subscription services, which may combine some services

(3) Licenses include product maintenance, revenue calculated from exchange rate 1 EUR = 1.30 USD

(4) Linux subscriptions included in services

(5) Licenses include software product maintenance etc, services include large scle information technology services

Table 4. Software licenses and services revenue of some of the world’s largest software product
companies.”

It must be noted that this kind of calculations between the shares of li-
censes and services revenue are only indicative since company accounting
standards are not fully comparable. However, the figures clearly show that
some software companies are totally dependent on license sales and many
companies make a substantial part of their revenue from licensing fees and
royalties. As we will show later, the growing popularity of open source
potentially undermines businesses models, which build on license fees and
royalties.

However, licenses have also other than revenue generating functions.
Particularly in open source licensing, the function of the license is not to
generate direct royalties but add some other restrictions aiming for e.g.
development cooperation, author attribution or even some form of ideol-
ogy. Thus, software licenses can be seen in a larger context as part of the
software’s functionality and not just the price.”

* Data collected from 2004 annual reports (form 10-K in the US - only SAP is an European
company). Companies were selected based on the facts that they have major software products,
over 1 billion in revenue, were featured in the top 50 of Software 500, and the share of li-
censes/ product sales could be calculated from the annual reports. The last requirement was the
most difficult to fill. Thus, for example Sun Microsystems and HP are not featured in the table.

* Interestingly, an OECD report on software measurement defines software as: “computer
programs, program descriptions and supporting materials for both systems and applications

FROM PROPRIETARY TO OPEN e 29

Source code. Usually, source code is not shared in proprietary licenses
and the software product is distributed only in object code (or intermedi-
ate object code as in Java) with additional restrictions on reverse engineer-
ing. The assumption is that source code contains valuable trade secret in-
formation, which should be protected from the eyes of the competitors.
Copyright and patents do not give any protection towards e.g. the struc-
tures, ideas and logic described in source code.

Sometimes source code is however needed, especially if the software
product is a development tool or a component, which needs integration
with other components (embedded software). Licensees expect more
adaptability and therefore source code or at least detailed interface de-
scriptions must be made available.” Figure 5 below explains options for

software distribution from source code perspective.

Source code

Compilation to Compilation to

native intermediate Distribution
object code object code
Distribution Interpretation Compllatlo_n /
Interpretation
v v v
Execution

Figure 5. Three main ways to distribute software products from source code perspective.®'

To conclude, it should be noted that also proprietary software is some-
times sold with source code. However, giving the source code of proprie-
tary software to the user usually means higher costs of license enforce-

software. Licenses to use or reproduce software are not separated from the underlying soft-
ware, and are thus included in this category.” See OECD (2003), p. 11.

% See e.g. Chdvez et al (1998), p. 49.

¢! Edited from Messerschmitt and Szyperski (2003), p. 102.

FROM PROPRIETARY TO OPEN e 30

ment; with source code at hands, the user has much more possibilities to
use the software in ways not allowed by the licensor.

2.3 Free Software and Open Source Licensing

Next, we shortly review the history of free software and open source li-
censing. The ideas of liberal distribution terms with available source code
were codified and then became popular with two major operating system
projects BSD and GNU/ Linux starting from the 1980s.°> Open Source Ini-
tiative later introduced the umbrella term “open source” to describe dif-
ferent types of free licenses in the late 1990s.

2.3.1 BSD License and Unix Copyrights

University background. In academic circles software had been for a
long time developed with the principles of open source code and free dis-
tribution. Many universities chose to use AT&T’s Unix operating system. It
was licensed from the beginning to educational institutions with full
source code under a trade secret agreement.®® Users were then encouraged
to develop the system further — in fact, this was also a practical necessity,
since AT&T did not really support the system. An evident implication of
AT&T’s policy was that Unix became the basis for the first large-scale open
collaboration development network.*

A major variant of AT&T’s Unix became from the University of Califor-
nia at Berkeley. Most notable Berkeley-hacker Bill Joy, then a computer
science graduate student, started to work on what eventually became Ber-
keley Software Distribution (BSD) in 1975. BSD soon became the academic
Unix development platform. If users sent their hacks, patches and fixes to
Berkeley, and they were accepted, the contributed code was added to the

2 As noted, BSD and GNU were not the very first sources of “liberal” licenses in the sense that
already many shareware and public domain software was distributed with extremely liberal
terms (if any) in the early 1980s. However, from historical perspective, BSD and GNU are the
§randfathers of the open source licenses used today.

® AT&T’s Unix in fact didn’t have a copyright notice until 1984. See USL v. BSDI proceedings.
5 Salus (1994) notes that AT&T’s approach to Unix was “no support, no bug fixes, and no
credit”.

FROM PROPRIETARY TO OPEN e 31

BSD code base.® Much of the Unix development in fact happened in BSD,
which was funded generously by Defense Advanced Research Projects
Agency (DARPA) in the United States.*

Bob Fabry, the head of Berkeley’s Computer Science Research Group
until 1983, described their motivation in an interview:®”

“I think the spirit in which we were putting this all together was
much the spirit that was picked up later by the Free Software Foun-
dation and the various people who were trying to build 'software for
the people ... The idea is that there is no duplication cost for soft-
ware, so it ought to be basically free, and we were all working to-
gether to try to produce this ideal system that we would all love to
have, and love to be able to use ourselves.”

To avoid the problems with possible copyright violations, license fees
were paid to AT&T for any distribution of Unix variants. For example all
BSD distributions included from the early 1980s a reference to AT&T'’s li-
cense. Nevertheless, the continuously rising license payments became soon
burden for many.®® Also companies, who used only parts of the code and
built stand-alone networking products for the growing personal computer
markets requested a separate version for their needs.

Finally, an independent creation from Berkeley called Networking Re-
lease 1 saw the daylight in June 1989. It was distributed under the first
modern BSD license. Berkeley computer scientist Marshall Kirk McKusick
later explained:*

% The acceptance rate wasn’t very high. Bill Joy has remembered in an interview that he didn’t
really get much contributions from outside. According to Kirk McKusick, who became in the
1980s BSD project lead, over 90% of contributions were rejected. See Leonard (2000a).

% Leonard (2000a), McKusick (1999).

 Leuonard (2000a).

% During an anti-trust investigation, which had started in 1958, AT&T was obliged to license all
but its telephone technology with reasonable terms to anyone. After the suit finally ended and
AT&T was broken up in 1984, the Unix license fees started to rise from a nominal $99 to thou-
sands of dollars. See Leonard (2000), and The Economist (2004b).

% McKusick (1999).

FROM PROPRIETARY TO OPEN e 32

“The BSD originated networking code and supporting utilities
were released in June 1989 as Networking Release 1, the first freely-
redistributable code from Berkeley. The licensing terms were liberal.
A licensee could release the code modified or unmodified in source
or binary form with no accounting or royalties to Berkeley. The only
requirements were that the copyright notices in the source file be left
intact and that products that incorporated the code indicate in their
documentation that the product contained code from the University
of California and its contributors. Although Berkeley charged a
$1,000 fee to get a tape, anyone was free to get a copy from anyone
who already had received it.”

AT&T court case. The success of Networking Release 1 raised the ques-
tion whether the whole operating system could be released in the same
way. Another Berkeley computer scientist Keith Bostic started the project.
He was able to attract volunteers to help him in rewriting the hundreds of
AT&T copyrighted files. Programmers from different countries re-created
the needed files by using the publicly available specifications.”’ After some
more work to the kernel an almost full version of BSD carrying name
“Network release 2.” was released with a believe that it did not contain
any AT&T’s code and was placed under BSD license.

This was to be tested on the markets. Berkeley Software Design Inc.
(BSDI) released this code as a commercial product titled BSD /386 adapted
for the increasingly popular Intel 386 processor architecture in early 1992.
It did not take long before Unix System Laboratories (USL), a majority-
owned subsidiary of AT&T, sued them based on copyright and trade se-
cret violations. Later USL also added University of California to the suit as
a defendant. University of California promptly countersued USL since
AT&T had also used Berkeley code in their Unix distribution and the par-
ties locked up into a court fight.”!

It soon became clear that both parties had made mistakes: AT&T’s dis-
tributed files from BSD without proper copyright notices and BSD had still

7 AT&T had published Unix specifications already in 1981
71 See USL v BSDI (1992) for details.

FROM PROPRIETARY TO OPEN e 33

a few files including some of AT&T’s source code. The BSD dispute was
solved after Novell bought USL in 1993. In January 1994, the settlement
was finalized and the result was that three files were removed from BSD
and another 70 were agreed to belong to USL.

Soon after the case was settled, BSD development split into different
paths including FreeBSD, NetBSD and OpenBSD, who all run on the cheap
PC architecture. It was now possible to freely develop and redistribute
BSD Unix branches under the BSD license. However, the popularity con-
test for the preferred operating system of Internet servers was already lost.
The legal case, open but closely coordinated development model, and now
a split into different development paths guaranteed Linux a flying start as
the new preferred Unix-based operating system for Internet servers.

2.3.2 GNU General Public License, Linux and SCO

Stallman invents GPL. Richard Stallman, a former staff member at MIT
artificial intelligence lab, started his GNU project publishing the GNU
manifesto in 1983 and then founding the Free Software Foundation. While
GNU manifesto had a political and ideological tone, the project was at first
technologically focused. The aim was no more or less than to write a com-
plete Unix-compatible operating system. But it didn’t take long for licenses
to get into the picture.

When Stallman was starting the GNU project he worked on Emacs text
editor. Stallman had written the first Emacs back in 1970s but because it
was written in another programming language the source code was not
useful. Subsequently James Goslig had written an Unix implementation of
Emacs in 1982, which he distributed with source code. Stallman took Gos-
ling’s source code and started to modify it to become GNU Emacs. Mean-
while, Goslig sold his Emacs to a company, which claimed that Stallman
wasn't allowed to distribute GNU Emacs because he had no authorization
from the new copyright owner. In effect, Stallman was forced to rewrite all

FROM PROPRIETARY TO OPEN e 34

code written by Gosling.”” Stallman memorized the event in a lecture in
1986: 7

“So it’s sort of strange that they then changed their mind and re-
fused to sign that agreement, and put up a message on the network
saying that I wasn’t allowed to distribute the program. They didn’t
actually say that they would do anything, they just said that it wasn’t
clear whether they might ever someday do something. And this was
enough to scare people so that no one would use it any more, which
is a sad thing.”

This was just one of the many occasions when Stallman was excluded
from the further development of an interesting project.”* To end these “sad
things” from happening, Stallman wrote Emacs General Public License in
1988. The idea of copyleft was for the first time implemented in this legal
copyright license text, which held that GNU Emacs was not public domain
but under copyright.”” It was free to copy and distribute but it wasn’t al-
lowed to change the license terms in any derivative work. It is worth not-
ing that before Emacs GPL Free Software Foundation didn’t use any li-
cense for their software and Stallman appeared to be opposing copyright-
ing software.”®

With an innovative license Stallman was able to go against the exclusive
effects of copyright with the help of copyright itself. In 1989 Emacs GPL
license text was partly rewritten for clarity and the license was renamed to
GNU General Public License. It became the default license for all GNU
programs. The second version of GNU GPL was published in 1991 and the
third version is currently in preparation.

72 See Tai (2001). Zawinski (2003) has gathered timeline describing Emacs development.

73 Stallman (1986).

7* Another anecdotal story is about buggy Xerox printer driver at MIT Al Lab. Stallman wanted
to fix the driver but the developer refused to give source code because he worked under non-
disclosure agreement. (Williams 2001). One more is about LISP programming language, which
was originally developed at the MIT AI Lab. Later on, MIT licensed the code exclusively to two
companies who made it proprietary and excluded Stallman from open development.

7 Later in this book we use the term “reciprocity obligation” when we speak of copyleft.

76 Stallman (1986) for example said: “I want to establish that the practice of owning software is
both materially wasteful, spiritually harmful to society and evil” and “we are back in the same
situation as in the ancient world where copyright did not make sense.”

FROM PROPRIETARY TO OPEN e 35

Linux and SCO court case. The breakthrough of GPL wasn’t however
Stallman’s GNU software. It was Linus Torvald’s new Unix-compatible
operating system kernel, which he started to develop in 1991. In January
1992, Torvalds decided to license Linux with GPL.” The subsequent suc-
cess of Linux accompanied with GNU and other free software meant that
GPL license became more known and popular also outside hacker circles.

As with BSD, also Linux has faced legal charges of its origins by large
Unix vendors. The next plaintiff was to be SCO, which bought Unix-
business from Novell in 1995. Later SCO was acquired by Caldera, which
again changed its name back to SCO in 2002. SCO/Caldera focused for
some years to Open Source having an own Linux-distribution but they
never really created any sustained business out of it.

In 2002 the company apparently decided that it made business sense to
use their rights from the original AT&T Unix to initiate legal actions. SCO
started to make statements about possible court cases against Linux sup-
porters and finally sued IBM in March 2003 for one billion dollars, which
was later raised to three billion. SCO claimed first that it owned the rights
to all the features, which were added to systems such as Linux somehow
relating to AT&T Unix System V. They claimed that IBM, having access to
SCO’s source code, had donated these features to Linux.”®

It eventually became evident that SCO’s claims lacked factual basis. No
source code in Linux was found to be copied from Unix System V. Novell
disputed that SCO’s ownership of Unix copyrights and patents would be
clear. In addition, SCO as Caldera had distributed early Unix sources in
2002 under GPL license without restricting the development of derivative
works in any sense. Thus, SCO had to back off from intellectual property
claims and concentrate on possible contract violations. As of late 2004, the
case is still going on.

77 According to Torvalds, after the GPL decision he was “lying awake at night ... nervous about
what commercial interests would do to the system.” See Torvalds and Diamond (2001), p. 96.
8 See SCO v. IBM (2003).

FROM PROPRIETARY TO OPEN e 36

2.3.3 Open Source Enters Vocabulary

Open Source Initiative. After the BSD case was settled and Linux be-
came popular, it seemed that open source had finally passed the necessary
“acid tests” for business credibility. The corporate interest in open source
software was growing fast in par with the Internet boom. However, the
BSD and GPL licensing models were still unknown to managers and even
to most of the technical audience in the software industry. Corporations
had also difficulties in understanding Stallman’s free software ideology.

Eric S. Raymond was the key individual who catalyzed the momentum
into what became later called as the open source movement. His influen-
tial essay “The Cathedral and the Bazaar”, first published in 1997, and
subsequent speeches attracted Netscape’s attention.”” The web browser
company was at the time losing market share to Microsoft and was eager
to experiment with radical alternatives. Clearly separating himself from
Stallman’s ideals, Raymond managed to persuade Netscape to adopt an
open source strategy as the first well-known software company in January
1998.

Right after Netscape announced their move to open source, computer
book publisher Tim O'Reilly organized a meeting for some of the most
well-known open source developers to discuss a common public strat-
egy.” Consequently, Open Source Intiative (OSI) was founded in February
1998 to address the increasing interest in Linux and other software devel-
oped under unifying open source principles. It started to certify licenses,
which comply with the general terms of the Open Source Definition
drafted by Bruce Perens.”'

7 In his essay, Raymond argues that Internet-based open source software development method
as used for example in Linux (“Bazaar”) is fundamentally superior to an alternative, where de-
velopment is restricted to a closed group (“Cathedral”). While originally Raymond'’s criticism
was targeted towards Stallman’s Cathedral-style free software projects such as Emacs, the
terms were later generalized to contrast open source software (Bazaar) against proprietary
software (Cathedral). The essay is reprinted for example in Raymond (2001).

% The list included e.g. Eric Allman (developer of Sendmail), Linus Torvalds (Linux), Paul
Vixie (BIND), Guido van Rossum (Python) and Larry Wall (Perl). Notably, Stallman wasn't
listed. See Williams (2002), p. 162-163.

1 Open Source Definition was further edited from Debian Free Software Guidelines (now
called as Debian Social Contract). For an overview of the events leading to the foundation of
OSI see e.g. Williams (2002), p. 155-168, and Weber (2004), p. 111-115.

FROM PROPRIETARY TO OPEN e 37

The software industry then took open source gradually into the big
business. In June 1998 IBM announced it would support Apache and in
July Oracle announced it will port its flagship database into Linux. In
August Microsoft said officially that they are worried about Linux and
Apache in particular. Trade press and popular newsmagazines started to
cover open source success stories.*?

Industry reaction. Today, over six years later, we can say that open
source has become a generally accepted practice to develop and distribute
almost any kind of commercially viable software. The following excerpts
from different company websites tell the level of enthusiasm in 2004:

IBM: “Linux is perfect for anyone with an eye on their budget who
still needs a reliable and scalable operating system.”
(ibm.com/linux)

Oracle: ”With technical contributions to enhance Linux, with code-
level support of the key Linux operating systems, and with strategic
partnerships, Oracle is offering an Unbreakable Linux platform for
customers to safely deploy Linux in a mission critical environment.”
(otn.oracle.com/tech/linux)

HP: “HP is hosting a number of open source software projects that
run on various HP systems.” (opensource.hp.com)

Apple: “Apple's open source projects allow developers to custom-
ize and enhance key Apple software. Through the open source
model, Apple engineers and the open source community collaborate
to create better, faster and more reliable products for our users.”
(developer.apple.com/darwin)

Microsoft: “The software industry often is depicted as ... rival
camps of commercial and open-source providers. Market forces,

¥ See e.g. OSI (1999) for an overview of major events during 1998-1999.

FROM PROPRIETARY TO OPEN e 38

however, are rendering this portrayal obsolete. Both models have

proven beneficial to the software market.”®

Many industry studies have explored the potential practical benefits and
risks of company migration to open source products. For example,
Forrester Research interviewed in 2004 IT managers from fifty North
American companies worth $1 billion or more to name benefits and chal-
lenges of open source software:

Modifiability
Familiarity
Quality
Choice
Low cost |
| | |
0 20 40 60 80
%

Figure 6. Benefits of open source according to IT manager interviews in 2004

% In 2001, when Microsoft publicly criticized open source heavily amidst the shared source ini-
tiative, their website read: “We believe that a shared source model, coupled with continuing
contributions to public standards, provides a path that is preferable to the open source ap-
proach founded on the GPL.”

FROM PROPRIETARY TO OPEN e 39

None

Quality

Credibility

Training

Viability

Commercial | I
support T T T T T

Security

Licensing

0 10 20 30 40 50 60
%

Figure 7. Challenges of open source according to IT manager interviews in 2004.*

Obviously, the low cost of licenses and avoidance of lock-in to one pro-
vider are major factors speaking for open source. Interestingly, also pro-
gram quality is mentioned frequently; while an average quality of any
published open source program may not be that high, the few star exam-
ples guarantee good public image for open source. Open source is also be-
coming more and more familiar since most computer science and engi-
neering students nowadays study everything on open source. Also worth
to note is that the practical possibility to modify the source code is not
among the key criteria why open source is used.

Many challenges remain, though. Most frequently mentioned is the lack
of commercial support. While major IT companies market open source as
part of their hardware solution (such as IBM, HP or Apple), or as a plat-
form for their proprietary software (such as Oracle and IBM) they may not
always directly support particular open source products. Licensing comes
second. Obviously licensing can be troublesome especially for those who
develop or market their own software, which is based on open source.
There are also many general challenges that supposedly are related to the

LaMonica (2004), presenting data from Forrester Research. Naturally, one must judge the re-
sults based on the fact that the detailed interview data is not available from the commercial re-
search corporation.

FROM PROPRIETARY TO OPEN e 40

fact open source products are still quite novel for many companies. These
include security doubts, the overall viability and credibility of open source
products and the lack of corporate training.

2.4 Social and Policy Dimensions of Open Source®

Before going forward with theory, let's do a short side trip inside the
developer communities and public policy debate. We aim to trace their
ethical values, which form the basis of community norms and are further
reflected in licenses.

2.4.1 Open Source and Individual Empowerment

In 1976 when software mass markets were still to form, Microsoft foun-
der Bill Gates sent his now famous “An Open Letter to Hobbyists”. In his
letter Gates warned the early hackers (“hobbyists”) not to freely distribute
commercial software between each other. Gates did not believe hackers
could ever have motivation to write any competing software to the prod-
ucts of software companies:

“Who can afford to do professional work for nothing? What hob-
byist can put 3-man years into programming, finding all bugs,
documenting his product and distribute for free? The fact is, no one

besides us has invested a lot of money in hobby software.”®

The letter was addressed to the members of the Homebrew Computing
Club, an informal gathering of some of the first hackers in Silicon Valley in
the mid 1970s.¥” Microsoft’s first product ALTAIR Basic was distributed
within the Club without Microsoft’s authorization.*

In a way, the world of Gates has turned upside-down during the last
three decades. Software development tools and methodologies have stan-

® This part was originally published in Valimaki (2003b).

86 Gates (1976)

¥ See Levy (1984), chapter 10, for a history of the Homebrew Computing Club.

% Words hacker and cracker should not be confused. In this study, we mean by hackers “com-
puter programming enthusiasts”. The word cracker is reserved for “illegal” hackers whose aim
is to bypass security or copy protection measures with the means of hacking.

FROM PROPRIETARY TO OPEN e 41

dardized to an extent that distributed and freely organized development is
finally efficient. Computer hobbyists have organized on the Internet and
laid the foundations of a competing moral code.” Today one can speak of
an open source and free software community working from garages and
cellars into one pile. Large companies, now notably excluding Microsoft,
support the work of the community and adopt its fruits to mainstream
business models.

What has happened in between? One way is to look at it from the per-
spective of science. There have always been universities where the culture
of free sharing and open development prevailed. Richard Stallman an-
nounced GNU project at the MIT in 1983 and open academic UNIX sys-
tems came from the hackers at the UC Berkeley. Also Linus Torvalds
started Linux while studying computer science at the University of Hel-
sinki:

“Back then, in ‘91, ‘90, most Internet people were at universities
which meant that the whole philosophy on the Internet was fairly
university-minded. The best reason for making Linux available at

that time was probably just because it fit the culture.”*

In other words, free software is not only formally or accidentally con-

nected with science but part of it.”!

Universities were a natural place for
open source methods to nurture. In a way, the structure of open source
development method likens the logic of scientific discovery with continu-
ous conjectures and refutations. Moreover, it includes elements from both
human and calculative disciplines. This human, or artistic, element high-
lights the role of the individual participant’s personal knowledge, com-
mitment and passion.

Thus, the characterization of free software development as an ideally

open, collaborative and cumulative process geared towards technical su-

¥ Levy (1984) formulated the ethic already in his seminal book on hackers. The postulates state
for example that “all information should be free” and “mistrust authority - promote decen-
tralization.” Himanen (2001) discusses the philosophy and ethics behind this moral code.

% As quoted in Asami (2001)

*1 See also Kelty (2001).

FROM PROPRIETARY TO OPEN e 42

periority is necessary insufficient. Individuals count. This is common wis-
dom, both in the academic and business circles. Software development is
only seldom arranged as a democratic process among peers — individuals
may have dramatically different capabilities to develop software.”” Internet
and open source have only made these rare few individuals stronger and
more visible than ever.

If we believe in the power of the educated mind, we may conclude that
the everyday practical ideals of tomorrow are set by the radical thinkers of
today. Individuals from Richard M. Stallman to Eric S. Raymond and
Linus Torvalds have all played a crucial part in launching an institutional
change that no longer dependents on particular individuals. Perhaps the
crucial point was when key individuals in open source and free software
communities understood the larger social and cultural context they were
changing. With expert-level economic or technical arguments they would
have never changed the accepted moral codes and other societal funda-
mentals of the information society.

Douglass C. North argues that new institutional arrangements will
emerge when there is need for institutional change.” We consider there to
be valid arguments that the international legal and moral codes on the
ownership of the knowledge economy have reached such a point. There
was a social need for institutional change, which open source licenses and
the free software ideology are now fulfilling.”

2.4.2 Community and Its Camps

The concepts of open source and freedom are ambivalent and they are,
at the best, defined in the discourse.”® Therefore we need to start from
identifying the main participants, or opinion leaders, in the discussion.

In open source world, there is no fundamental difference between insti-
tutions (such as firms and states) and individuals. In principle anyone can

% Brooks (1975) famously illustrated this in his seminal book on the project management les-
sons from IBM System /360.

% North (1982).

% For example Weber (2004), p. 179, argues that open source licenses are not only legal docu-
ments but also constitutional statements of certain social structures.

% See Berry (2004) for how discourse analysis can be applied to free / open source discussion.

FROM PROPRIETARY TO OPEN e 43

participate into an open source project, even anonymously. No wonder,
the number and variety of discussion participants is huge. In the words of
Fink, “there are too many companies, too many groups and too many in-
dividuals for it [open source] to go away anytime soon”.”* However,
amidst the noise, several voices are clearly louder than others.

Eric S. Raymond may be characterized as a sort of anthropologist of the
open source community. Before writing “The Cathedral and the Bazaar”
and starting to advocate the term open source, Raymond was already
known in the hacker community for the maintenance of “Jargon File”, a
dictionary of the hacker slang. Since he co-founded Open Source Initiative
in 1998, Raymond has been an active commentator and defendant of the
corporate friendly image of the open source movement.

In heart of the community, there remains the figure of Richard M. Stall-
man. Of all the individuals in the community he is perhaps the closest one
to an institution today. Power means also struggle. An observer who starts
reading Stallman’s writings and commentaries on the Internet soon finds
out that the community is rather heterogeneous social system. There is the
usual competition on leadership, mix of opinions, alliances, and such. But
most of what is visible can be traced back to Stallman: Linux, GNU li-
censes and the concept of free software.

During the recent years Stallman has extended his concept of free soft-
ware to free society.” This is mainly done through the Free Software
Foundation. In the issues of public policy there are also other important
participants with ideological debt and ties to free software and open
source. Those include various grass roots movements and interests groups
with Electronic Frontier Foundation in the lead.”

In fact, one may argue that the most important cultural and political im-
pacts coming from the open source and free software communities have
nothing to do with the official open source movement. Open Source Initia-
tive is not politically active but rather an informal interest group with
practical and limited goals. However, while free software had been used

% Fink (2001).

7 Stallman (2002).

% For more information on participants in the policy discussion see Braithwaite and Drahos
(2002) and Oksanen and Vilimaki (2002).

FROM PROPRIETARY TO OPEN e 44

and developed for years OSI was the key effort that accelerated its break-
through into the society at large. Without OSI, the political and cultural
implications could have delayed even more.

2.4.3 Ethical or Technical Goals?

“I don’t advocate open source” (Richard Stallman)

Let's now turn to the real discussion and compare the two ideological
camps - free software and open source communities - with each other.
What are they trying to say?

Stallman is not only interested in software and technical issues, but also
policy, culture and ethics. In fact, the cultural and political aspects of free
software seem to count him more. At heart, Stallman pushes GNU soft-
ware licenses and his concept of freedom further than any technical issue.
He clearly prioritizes, a priori, an ethical norm over a technical issue:

“Some free software is developed collaboratively, and some is not,
but that is secondary... [Open Source] encourages people to think in
terms of practical expediency, and it doesn't activate that part of
their mind where they think about freedom and right and wrong
and mistreating people or treating them right...They're putting the
battle in the terrain where they think they can win on the question of
just who is going to provide you with better software and support in

the next few years... “*

The open source camp may not reply. Linus Torvalds answers in short:

“I'm not religious about it. I think that Open Source is the almost
77100

certainly the best way to get the best technology.

» As quoted in Bowman (2002).

1% As quoted in Asami (2001). On the other hand, Torvalds has recently expressed political mo-
tives sending open letters to SCO discussing Linux copyrights and another to European Par-
liament opposing software patents.

FROM PROPRIETARY TO OPEN e 45

Stallman ignores. In his rhetoric, Stallman is like writing to a community
of voters who can either pick his or the competing - open source - ideol-
ogy. Stallman compares the options to his audience:

“Let’s compare the two philosophies. Open source gives priority
to the developer’s wishes; we give priority to what makes a commu-
nity of free persons possible. The open source movement regards
non-free software as a suboptimal solution; in the free software
movement, non-free software is a problem - a social problem - and
replacing it with free software is the solution. This is why corpora-
tions prefer "open source™: because it doesn't raise issues they don't
like.”!!

Stallman clearly indicates that proprietary software causes “a social
problem” and it is the mission of free software community to fix it. In this
sense, the open source community has more flexible approach. Trying not
to polarize the issue too much, Eric Raymond takes a clearly opposing
view to Stallman arguing:

“Explicitly jaw-boning people on issues like that I think is often
counterproductive. The approach I'd prefer is to point it out fairly
quietly that there are times when it makes economic sense to give up
proprietary control, and lay out all the arguments and let people

make their own conclusions.”?

2.4.4 Influencing Political Institutions

“It used to be that the problem was just the lack of free software,
so we wrote free software. But now we face these attempts to pass
laws that prohibit our work.” (Richard Stallman)

The step from technical nuances into full blown political discourse has
been taken. Open source has become increasingly political largely because

' As quoted in Bowman (2002).
122 As quoted in Broesma (2002).

FROM PROPRIETARY TO OPEN e 46

of the alliance of cyber rights activist groups with the academia and the
spreading of Richard M. Stallman's ideology through GNU licensed soft-
ware. It is not difficult to find a non-profit organization, mainstream poli-
tician or journalist who actively supports fair rights in information.

If one accepts Peter Drucker's characterization of non-profit organiza-
tions as “human change agents” who build up a community and define a
common purpose, then Stallman and his Free Software Foundation are
clearly winning ground.'” The question now becomes how far they can go.
Ultimately, Stallman believes free software can help in addressing funda-
mental societal problems:

“Free software can also help in solving other social problems. One
of them is the digital divide, the fact that a large faction of humanity

can't afford to have access to any of this computer technology.”'*

Interestingly, also Eric S. Raymond in the forefront of open source
movement can be described as a sort of political fundamentalist. A non-
compromisingly practical treatment of inherently political issues leads to
what some call free market fundamentalism, others libertarianism.!® Thus,
one simply can’t map the political opinions in the rhetoric of community
opinion leaders within a particular political party or ism. There are liber-
tarian elements of protecting individual freedom while, at the same time,
one can find opposition towards the global corporate capitalism in side
with socialist and green movements.

2.4.5 Practical Public Policy Initiatives

The political impact of open source is most visible in different public
policy initiatives. A number of reports ranging from open source devel-
opment policies to open source governmental policies have been pub-

1% See Drucker (1990), p. xiv.

1™ As quoted in Bowman (2002).

1% As an extreme example, Raymond promotes an initiative called “guns for geeks” claiming
that people should have freedom not only to source code but to also own guns: “Geeks and
guns are a natural match. Open-source software is about getting freedom; personal firearms are
about keeping it.” See Raymond (2002).

FROM PROPRIETARY TO OPEN e 47

lished during the last few years.'” Some have hoped that open source
would narrow the technological gap between rich and poor parts of the
world. Others have strived for open source to be a preferred option in gov-
ernmental software procurement policies. In addition, some argue that
open source should be preferred for military because of vendor-
independence. Already hundreds of open source related public policies
and laws have been proposed and accepted in different parts of the
world."”

The purpose of this book is not to study any of these open source public
policies. It must be noted, however, that historically the government has
had a decisive role in the birth and growth of software industry in many
countries. Governments are still large software buyers so public support
for open source would also impact the software industry. No wonder,
companies who have most to lose if open source becomes more popular
have started to campaign explicitly against open source policies. Most no-
tably, Microsoft launched in 2002 an Initiative for Software Choice, which

argues among others that:'"

““Preference” laws harm the overwhelmingly proprietary-based
IT industry because government administrators are instructed to
automatically acquire or prefer OSS to proprietary offerings. More
radically, “preference” proposals represent a fundamental assault on
the incentive system that allows the IT industry to flourish and bene-
fit consumers. Not only do they stymie competition in government
markets, they signal to the industry that bedrock notions of free
market enterprise, intellectual property protections, and the impetus
to innovate no longer apply to their products and services.”

Open source advocates have reacted bitterly to such arguments.'” In-
deed, the above statement makes one ask whether open source really

v

works against the “incentive system”, “competition”, “free market enter-

1% See e.g. Hahn (2002) and Drahos (2003).

17 See Keiber (2004) for a summary. Most policies support open source.
19 Initiative for Software Choice (2004).

1 See e.g. Perens (2002).

FROM PROPRIETARY TO OPEN e 48
prise”, “intellectual property” and innovation in the software industry. In
the next chapter, we take a closer look at these economic issues behind the
soft public policy argumentation.

2.5 Conclusion: Explaining the Increasing Role of Openness

Open source has been part of the software industry from the start. The
idea of open source code was however hiding during the 1980s and early
1990s when the development and market conditions favored centralized
and closed development and proprietary licensing. Still, shareware distri-
bution model in mass markets and continuous open source development
at universities showed that for some purposes it would be beneficial to dis-
tributed software freely and utilize an open development method.

In the 1990s, the environment eventually changed. We can now offer
many explanations to open source’s rise into the mainstream of the soft-
ware industry. These include:

- From technical perspective, the rapid growth of the Internet, the
trend towards cheap PC computers and a need for more flexible
development methods have supported open source

- From business perspective, open source has offered possibilities
for new companies to change the existing market structure and
rules of the game. Open source has also altered the market strate-
gies of incumbents.

- From social policy perspective, open source has been claimed to be
a tool for more democracy, access to information and social equal-
ity as the role of software in the society continues to increase.

The social and cultural effects of open source can’t be overemphasized.
It is crucial for companies to understand the social and ethical dimensions
if one wishes to really participate and influence open source development.
Entering open source may also require fundamental reconsideration of
company’s intellectual property rights strategy.

FROM PROPRIETARY TO OPEN e 49

We also noted that open source is a somewhat ambiguous concept itself.
There is no singular open source community but rather multiple individ-
ual voices stemming from the hacker culture, whose leftist and liberal ide-
als originate from the 1970s. The software industry however adopted the
term open source right after it was introduced and institutionalized in the
late 1990s. In this book, we use open source much in the sense the software
industry at large sees it as a reference to various open source software
businesses.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 50

3 ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS

This chapter discusses the economic theories of networks, copyright and
patents in the context of software products. All theories characterize dif-
ferent aspects of software products bearing some differences but also
many similarities. Aim of this chapter is to build a coherent theory where
open source software licensing models can be analyzed within a larger
economic context.

3.1 Economic Characterization of Software Products

3.1.1 A Network Economics Approach

In this study, we follow the industrial economists’ approach analyzing
software in the context of network industries.""” The viewpoint taken is of
a firm producing software products to competitive markets. We are
mainly interested in software as an economic product of the software in-
dustry. In the following, we explain how concepts developed in the litera-
ture of network economics apply to software product markets.

Unfortunately, this is not as straightforward as it sounds since it is diffi-
cult to judge which economic concepts are most relevant. The fact is, there
is currently oversupply of fine-grained economic characterizations and
classifications of software markets.'"" For example, Shy’s textbook identi-
fies four main attributes as compatibility and standards; network external-
ities; lock-in and switching costs; and economies of scale.'”* Gottinger lists
sixteen “strategic characteristics”.'*®* Moreover, there are sound and em-
pirically backed arguments by e.g. Liebowitz and Margolis suggesting the
general role and explanation power of the network economics approach to

1 Relevant theoretical research can be traced back to Katz and Shapiro (1985) discussing the
nature of network effects and market power especially from the producer’s perspective and
Teece (1986) considering how also complementary producers may generate profits. A modern
overview of the network economics approach as applied to the software industry is presented
in e.g. Shapiro and Varian (1999), Shy (2001), and Messerschmitt and Szyperski (2003).

" Westrap (2003), p. 5.

12 ghy (2001).

' Gottinger (2003), pp. Xv-XVi.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 51

be limited in the context of software markets.'"* While they acknowledge
the theory to be relevant, the implications and usefulness of the results are
not always valid in all market situations.

With these shortcomings in mind, let’s go forward with the theory.

3.1.2 Software as an Economic Good

Software as an information good. The starting point for analysis is the
economic theory of information. The assumption is that software can be
described as a good, which is initially costly to produce but then cheap to
reproduce. This means that the production of software implies what

economists call the economics of scale. We can illustrate the production
and reproduction costs of software products the following figure:

p

Total costs = py+p,,q
Po*Prn /

Po

Average costs = p,/q + p,

pm e Marginal COStS:pm
q

Figure 8. Different cost functions in the production of information goods.'”

In the figure p, denotes initial production costs and p,, costs from re-
producing each additional copy. Total cost function is an aggregate of
these two and average costs equals total costs divided by the number of
copies made. The figure helps to explain that for any given price above p,,

" Liebowitz and Margolis (2001), Liebowitz (2002).
15 Shy (2001), p. 54.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 52

there is a certain level of sales (q) after which every reproduced copy im-
plies profit. Since the price of the product is not dependent on p, we can
note that the development costs are not a good basis for software product
pricing.

While the model is simple and explained in many economics textbooks,
it has severe limitations of applicability in the software products industry.
The model does not take into account the costs of selling and supporting
the product; for example, the costs from marketing, maintenance, and up-
grading are not included in “marginal costs”, which are assumed to be
constant and minimal compared to production costs. Still, the model of
software as information good may be applicable to e.g. entertainment
software and other end-user applications with minimal selling and sup-
port effort from the side of the producer.

Software as a capital good. Capital goods are costly to produce and the
product supplier earns profit from the installation, maintenance and sup-
port. Capital good theory has been applied to e.g. construction projects.

But also larger software products can be likened in many ways to capital
goods. Especially early software products were very costly to produce and
once the system was up, it was hoped to be around for years to come. To-
day for example Enterprise Resource Planning (ERP) software can be best
described as capital goods.

One could think that the economic effects of copying depend on wheter
the work should be regarded as a consumer or a capital product. It is
popular to claim, for instance, that the social costs of copying consumer
goods are less damaging since the society consists mostly of individual
consumers. It is also costly to monitor consumer behavior. Further, one can
also argue that the diffusion of important technology in capital goods in-
creases innovation and the social welfare as well. Especially when soft-
ware products are used as means of production they should probably have
more flexible use rights than assumed in copyright law. On the other
hand, it always possible to counterclaim that copying decreases the crea-

tion of new works whether they were consumer or capital goods."*

¢ Watt (2000), p. 25-26.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 53

Software as a public good. Independent of the theory of information
and capital goods, software as a product can be also seen as a public good.
For distinction between public and private goods two sub-concepts require
definition:

- Non-excludable. There can be unlimited number of simultaneous us-
ers of the good; one can’t restrict others from using the good. The
quantity of the good is can’t be controlled; it is equal to everyone.
Examples of non-excludable goods are public spaces and open
source software.'”

- Non-rival. Goods do not consume; the usage of the good by one does
not diminish its usability by others. The quality of the good is not
controllable; it is equal to everyone. Typical examples of non-rival
goods are air and proprietary software.

Public goods are both non-rival and non-excludable. Thus, their value
does not diminish but instead increases from use.'® Private goods, in
comparison, are both rival and excludable. This can be perhaps best illus-
trated in the following table:

Rival Non-rival
Excludable Private goods

Private car Proprietary software
Non-excludable Public goods

Public space Open source software

Table 5. Public goods such as free software are non-excludable and non-rival

The theory of public goods sounds appealing in the context of open
source software. Intellectual property rights, for their part, arguable pri-
vatize the public good nature of software by offering excludability. Still,
also proprietary software is non-rival: copying software against its license

' Non-excludable goods are often called commons. Selfish overuse of the commons results in
the tragedy of the commons, a term coined by Hardin (1968).

"8 Some authors call this feature of public goods as the comedy of the commons. See e.g. Rose
(1986).

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 54

terms (piracy) does not diminish its value to the user (though some com-
plementary products or services such as warranty and support may not be
available).

3.1.3 Components and Systems

Finally, software can be characterized as a system product. We know
that software is used in computer systems consisting of different hardware
and software components. Software is never used in isolation but as part
of a system. The system may consist of separate hardware and software
components and for the system to work the components must in some
sense work together. This is, they must be compatible with each other. In
this study, we define terms compatibility, interoperability, and standards as
follows:

- A component is compatible with another if they communicate to-
gether without modification. Further, compatibility can be one-way
or two-way, if both components can communicate with each other
(two-way compatibility), then they are said to be interoperable. For
example new software can be compatible with old software (“back-
wards” compatible) but not vice versa; in this case new and old
software are not interoperable.

- A standard is an ex ante set of rules aimed at compatibility between
components. Interoperable components follow the same standard.
Further, standards can be open or closed. Anyone is in principle free to
write an own implementation for an open standard.'’ Obviously, an
open standard must have open documentation and any test suites
must be openly available. For example many programming and for-

" Open standards should not be confused with the principles of open source in this regard.
Open standards can traditionally include so-called reasonable and non-discriminatory (RAND)
patent licensing terms, which are contrary to the principles of open source. Open source advo-
cates demand that standards should be royalty-free to be called open while most industry
standard groups do allow patent royalties. See e.g. Rosen (2004), pp. 304-311, W3C Patent Pol-
icy (2004) as an example of a recently adopted royalty-free standards definition and Kane
(2002).

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 55

matting languages are clear examples of open standards. Closed
standard is the complement of an open standard.

Below is an illustration of the components approach to software:

Manufacturer A Compatible system
1 2 \
B, A,
Manufacturer B
A, B,

1 2 —

Figure 9. Components approach to software products.

Manufacturers A and B both produce two components, here named as 1
and 2. If only combinations A,A, and BB, are possible, then the compo-
nents are incompatible. If either A;B, or B,A, is possible, then the compo-
nents are one-way (or e.g. backwards) compatible. If all combinations are
possible, then the components are two-way compatible and perfectly in-
teroperable.

Compatibility can be gradual. A perfect compatibility would mean
there are no costs or performance reduction between the communi-
cations between two components. In practice, for example Unix op-
erating systems are more or less compatible with each other. While
the Unix system core is standardized (open POSIX standard), each
implementation follows the standard only partially or adds own in-
compatible features.

If components are owned by different companies, this may lead to frag-
mentation. If there are too many owners with exclusive rights for different
components of the system, this may lead to underutilization because of the

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 56

costs for negotiating the necessary rights for the whole system may prove
too high.'”

It is often thought that open source software must be compatible by its
nature (available and modifiable source code) and follow open standards.
However, that is not always the case. It is possible, as will be discussed
later, that open source follows a closed standard.”” Further, some open
source licenses may be incompatible with each other and thus the same

fragmentation problems may arise as with any proprietary components.'*

3.1.4 Path Dependence, Lock-In and Network Effects

The system product approach can be used to explain why in the soft-
ware industry only few products typically dominate the market at a time.
In short, it may not be rational for users to change from one product path
to another because of lost system compatibility or benefits of existing user
network. This leads to define switching costs and lock-in:

- Switching costs are the costs of migration between incompatible
components. We can further identify one-way or two-way switching
costs. For example, if one needs to learn how new component works
before using it, there will be no switching cost back to the old (al-
ready known) component. To contrast, any cost in the actual switch-
ing transaction means that there will be also costs in switching
back.'?

- Recently, switching costs have been analyzed as a tool to create lock-
in situations. If the switching costs are high enough to affect the pur-
chase choice of the user in favor of the product he is currently using,
then we say there is a lock-in situation."” Lock-in can be for example
contractual, related to durable purchases or based on loyalty pro-
grams.'” Both hardware and software lock-in have been common. In

12 This has been referred to as the problem of anti-commons, a term coined by Heller (1998).
2 Section 5.5.2

22 Section 5.3 4.

12 Farrell and Klemperer (2001).

2! See e.g. Besen and Farrell (1994), Arthur (1989) and Katz and Shapiro (1985).

1% Shapiro and Varian (1999), p. 117.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 57

principle, the effects of hardware lock-in can be fought with open
systems architecture and software lock-in with open source software.

A common argument for open source migration is that it does not imply
lock-in to particular developers. In theory, it is indeed possible to change
the developers if source code is available and freely modifiable. However,
the development of particular source code further may usually require the
tacit knowledge of the original developers, which may be very costly to
acquire especially if the product is very complex.'” Moreover, as will be
noted later, the license terms may still include limitations, which later re-
sult in a de facto lock-in situation.

Finally, positive network effects also characterize software markets: '/

- If the value of the good to its user depends on the number of other
users, the good is said to have network effects.”” In software mar-
kets, network effects are typically positive: large user base raises the
value of the product to one individual.

- Network effects can be both direct and indirect. Effects to the prod-
uct itself are said to be direct and effects to other products through
compatibility or non-compatiblity are said to be indirect.'”

- Network effects are not restricted to material goods. It has been ar-
gued that for example not only software but also capabilities of the
developers are shared and enjoy benefits of the expanding net-
work."®

In practice it may not be always appropriate to speak of network external-
ities, since software producers typically have the option of internalizing the
outcome of network effects through e.g. proprietary copyright or patent

1% For example the Mozilla and OpenOffice projects faced this kind of problems after they were
open sourced. It took a long time to get new developers for such large and complex projects.

' Von Westrap (2003), p. 100-103, lists six empirical studies where the existence of network
effects has been studied and proved in software, hardware and telecommunications industry.
He also identifies numerous theoretical models for the detailed analysis of network effects.

128 Another term is “bandwagon effects”, a term proposed by Weblen and first analyzed by
Leibenstein (1950).

1 See e.g. Katz and Shapiro (1985), Economides (1996).

1% See Garzarelli (2003), referring to the economic theory of professional clubs.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 58

licensing. However, in the case of open source, the software developers
have in many cases no power to internalize the effects through such direct
means. Thus, one can argue that for example the copying and use of
GNU/Linux operating system kernel — whose copyright is permanently
under an open source license — causes network externalities to companies

competing in operating system software markets.""

3.2 Economics of Software Copyright

Does the society really need a copyright law in the first place? This age
old question is as relevant today as it was when the printing press was
new technology and the first privileges were granted in medieval Euro-
pean city-states. Rampant copying of music and movies on the Internet has
made entertainment industry to call for stricter copyright enforcement
while critics argue copyright should be reformed for digital works. In the
midst of this debate, however, software copyright seems to work surpris-
ingly well.

3.2.1 Motivation of Developers

While law treats copyright as a form of artistic creation, economist typi-
cally speaks of innovation. And no creative innovation will ever impact
human society unless entrepreneurs and traders start distributing it in the
society. However, the basic question of why creativity happens in the first
place is still unanswered. For example the following reasons have been of-
fered:'*

- Monetary and other material reward
- Fun and “scratch of the itch”'®
- Fame and merit

- Service to the society or mankind"*

31 Gee e.g. the opening example of Rahnasto (2003), p. 1.

'3 For an early list of reasons by an economist see Machlup (1962), p. 144-145.
3 Gee e.g. Torvalds and Diamond (2001) and Raymond (2001).

134 See e.g. Himanen (2001) for extensive discussion on the “hacker ethic”.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 59

- Instinct of workmanship

Also one of the most discussed topics in open source has been the moti-
vation of developers. Why do some developers contribute their spare time
to community projects such as Linux or Apache? Answers ranging from
the economics of signaling to ethical goals have been offered.” For the
purposes of this book, it is sufficient to note that the software industry
supports open source strongly. Commercial open source projects and
other corporate interest in open source development shows that there are
also clear industrial profit motives in addition to the possibly altruistic mo-
tives of individuals.

3.2.2 Investors and Incentives

There are no definite answers how to increase innovative and creative
activities in the society. For instance Machlup has noted that that the in-
crease in inventor compensation, the number of inventors, or the number
of innovations do not correspond directly to the number of new inventors
and effective innovations.” It is especially not clear how creativity is
linked with ownership and intellectual property.

The history of copyright shows two motives behind an institution for
limited ownership over creative works. Until modern times, an important
goal of copyright was to give both printing press owners and the state
some control on what was published and printed. Thus, instead of creating
incentives to new authors or innovators, the first privileges predating
modern copyright laws started from the idea that the interests of those
who invested in the copying machines and the supportive institutional struc-
tures should be protected in the first place.

The role of the author didn’t rise until another few hundred years. John
Locke is usually referred to as the first philosopher, who explained the

dual existence of both commons and individual intellectual property.’’

% See e.g. Lerner and Tirole (2002) for signaling and Raymond (2001) for more altruistic or
technical motivations.

3¢ Machlup (1962), p. 166.

37 Locke (1690), part V.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 60

The idea was that every individual member of the social community
should have the right to his own person. Further, all work and its results
can be traced back to the person. Initially, all property belongs to com-
mons but when an individual mixes his work with the commons this be-
comes his personal property.

Theories of property rights are tied to the cultural background. For
example in many Asian cultures the copying of intellectual creations
has been acceptable from early times. In China, the value of an artist
may have been directly dependent on how much his works were
imitated and copied.'*®

In the 1700s copyright laws subsequently recognized the interests of in-
dividual authors and the institution was justified as an incentive for authors
to create more new works.”” However, copyright also continued to de-
velop with close contact to technological development and the interests of
investors. During the 20* century, copyright came to include maps, techni-
cal drawings, computer programs, and more recently also technical protec-
tion mechanisms — all products of industrial enterprises rather than indi-
vidual authors. Roughly put, copyright followed technological change and
at some point of time the early distinction between authors and investors
became blurred.

In effect, one can argue that copyright is today justified both as an incen-
tive to individual authors and as an institutional mean to protect creative
investments. One obvious reason for the relative strength of the invest-
ment justification is the strengthening of the property analogy. Today,
copyright and the management of intellectual property is regarded as a

relevant part of any technology and media company strategy.'*

138 Gee Alford (1995) and Stille (2002).

3 The incentive theory is perhaps most famously manifested in the US Constitution, which
stated an exclusive right to authors and inventors “for limited times” in order to “promote the
progress of science and useful arts”.

* See e.g. Granstrand (1999) and Rahnasto (2003).

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 61

3.2.3 Costs of Copying

But how much does copying in fact cost to authors, investors and the so-
ciety at large? Maybe the answer is: not that much. Already Plant argued
famously that copyright law is not an optimal way to regulate the copying
of books.'"! Instead, he tried to show that even in the absence of copyright
new books would be created, book publishing industry would exist and
the society overall would be better off. He didn’t however take into ac-
count the welfare losses to individual authors and publishers.

Term “piracy” has been used for centuries to characterize illegal copy-
ing.'" A recent IDC study commissioned by Business Software Alliance
(BSA) calculated that 36% of software in use worldwide in 2003 was pirate
copies. In the main markets this so-called piracy rate has been going down
slowly: in the US the rate was 22% and Western Europe 26%. From this
data, the study also calculates “losses” to software vendors by assuming
that each illegal copy would have been bought legally at the market
price.'*

Most economists have disagreed on such loss calculation for as long as
such piracy studies have been published."** The economic problem with
thinking copying as being categorically detrimental is roughly the follow-
ing: the one who copies does not take anything exclusive away from the
copyright holder but merely imitates and reproduces. The abstract work as
an intellectual object does not change hands; only it’s real-world represen-
tations multiply. Now whether this multiplication increases or decreases
the welfare of the authors, users and the society as a whole is a completely
separate issue.

Thus it is not possible to prove in any way whether illegal copying
causes such costs, which are commonly claimed by organizations like
BSA.'® Instead, economists have concentrated on building models to esti-

141 Plant (1934).

%2 Already e.g. Luckombe (1771), p. 76, mentions piracy referring to the detrimental quality of
copies.

143 Business Software Alliance (2004).

4 BSA was founded in 1987.

%5 This is one of the main results of Watt's comprehensive survey of the economic literature on
copyright. See Watt (2000).

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 62

mate the optimal (illegal) copying rate from author’s perspective. The as-
sumption is that neither extreme (0 or 100% piracy rate) is beneficial to the
authors. Allowing copying to some extent builds market base for the work
in side with increasing the welfare of the society as a whole.'* In a highly
competitive market setting new entrants should obviously tolerate more
piracy whereas incumbents should fight against it.'*

3.2.4 Optimal Limits of Copyright

It seems clear that copyright is not a typical property right. In addition
to protect the interests of the author and the investor, copyright must also
allow users to access and modify works in a reasonably liberal way. It is said
that no new works are created without learning from others. In short,
copyright must balance the benefits from the creation of new works with
the costs of limiting free usage of those works.'**

Riis separates three components in copyright, which mainly determine
its scope: rights covered, the scope of those rights and the term of copy-
right.'"* Let’s discuss each of these in turn starting from the question

whether it is beneficial for an author to allow indirect copying or not.

Indirect Copying. Economists have made difference between direct and
indirect copying (imitation). When a work is modified or mixed with an-
other work, it is difficult to find out what is the economic impact of this
new work to the copyright holder of the original."”® Perhaps indirect copy-
ing should be therefore regulated more flexibly taking into account the
case-by-case economic effects to the original work’s copyright holder.

The value of indirect copying is naturally different to the user and origi-
nal author. For example, Besen and Raskind argue that that the original
author should have only very limited right to influence modifications or
derivative works. Giving imitators possibilities to create new works, which

1% See Conner and Rumelt (1991) focusing on private returns and Takeyama (1994b) expanding
the analysis to social welfare.

¥ See e.g. Prasada and Mahajan (2003) for an analysis.

8 Tt can be assumed that the lost sales to copyright owners are fully compensated with in-
creased free usage.

9 Riis (1996), pp. 86-87.

130 Watt (2000), p. 31-33.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 63

are based on existing ones, one supports entrepreneurship and avoids
costly reinvention.”! Also Landes and Posner point out that whenever new
works are created, old ones are commonly used as the basis — explicitly
and implicitly, by adding new contribution or literally. Obviously broader
copyright increases the costs of creating new works if the existing authors
are given power to control the creation of indirect copies or modified
works.'??

Here, one can also point out Liebowitz’s idea of applying the concept of
price discrimination in copyright. In short, the copyright holder can license
the work with tailored price and rights to different usage groups according
to their need to e.g. make direct or indirect copies. Part of the users may be
willing to pay more for the possibility to copy or modify the work further
while it may not be reasonable to charge the majority but a minimal licens-
ing fee if any. '*® Especially in the case the market implies network effects,
copyright holder should consider first expanding market base by allowing
copying and then later price discriminate those users who are most willing
accept copyright enforcement and pay license fees for some types of

uses.!?

Exceptions to Copyright. From economic perspective, any exemption in
the scope of a right is justified when the costs of enforcing the right out-
weigh possible benefit. For example, private use of a work is typically al-
lowed as a special exemption. The private use of a work would be very
costly to enforce and, on the other hand, private use may directly affect the
output of individual authors when they study existing works in creative
ways.

In the context of computer programs, reverse engineering and interfaces
have been debated issues. Should the scope of copyright reach also pro-

151 Besen and Raskind (1991).

132 Landes and Posner (1989), p. 333. On the other hand (p. 332), Landes and Posner also point
out that limiting the author’s control according to copyright law may lead to increasing self-
protection through e.g. technical copy protection systems and marketing of inferior quickly-
prepared products in the hope that demand would be satisfied before imitators enter the mar-
ket. One can ask, though, aren’t publishers going into this direction without the scope of copy-
right having anything to do with the issue (since copyright is being broadened all the time).

15 Liebowitz (1985).

13! See Takeyama (1994b) for a model and discussion on long-term strategic implications.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS o 64

gram interfaces? If not, should reverse engineering for interoperability,
which may require the copying and modification of the program, be al-
lowed as a special exemption to copyright? There is no one right answer.
Reverse engineering the program may boost the creation of new works but
on the other hand it may result in unfairly competing works and less in-
centives to create in the first hand.

Copyright’s Term. In their influential study report to the US Copyright
commission before computer programs were copyrighted, Braunstein et al
noted that the optimal protection period should be judged case-by-case. As
a rule of thumb, the protection time should be less than the economic life
of the work. Now regarding copyright law, a crucial question is whether
efficiency gains would outweigh administrative costs of multiple protec-
tion terms in copyright legislation.'

Tailored copyright term is rational if we assume that the goal of copy-
right is a balanced benefit to both copyright owners and users; before
copyright expires, owners have a temporary monopoly. In the case of
software, product life-cycles have historically been somewhere between 5
and 15 years.” Still, copyright protection of computer programs follows
today the same terms as with any artistic work and is currently multiple
times over product lifetimes.

From an economic perspective, increasing the copyright term adds the
transaction costs for copying and otherwise reusing old works, which are
no more circulated but still under copyright. It may be difficult to contact
the author or publisher of a work published over fifty years ago and nego-
tiate a permission to copy the work. Instead, there is hardly any increase in
the economic incentive for authors to create new works whether the copy-
right lasts 50 or 70 years after the death of the author."”

Luckily, theoretically inefficiently long term of copyright has not slowed
down new software development in practice. Since product life-cycles are

1% Braunstein (1978), pp. 241-242, especially footnote 11. Already Plant (1934) argued that since
publishers take books typically out of circulation in 3-5 years, a copyright term of 25 years (as it
was in the 1930s) is obviously economically inefficient.

1% See Campbell—Kelly (2003) for a historical overview.

157 Recently leading US economists published a well-argued note in a legal case challenging the
copyright term extension in the United States from 50 to 70 years. See e.g. Akerlof et al (2002).

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 65

short and new technology breakthroughs common, essential parts of new
products are time-by-time developed from scratch. Therefore any legacy
technology and its copyright or other legal protection may not affect the
development of new products in any way. One may speculate that per-
haps implementing variable copyright terms to software works would not
have implied such efficiency gains some economists have suggested.

The life-cycle model doesn’t apply to computer games. Even the
very first ever developed games can be played, and in fact also are
played, on new computers through emulators.'”® It is in strict legal
sense illegal to download most retro-games since copyrights to these
games have not expired and many times the publishing company
doesn’t exist either with whom to negotiate. Retro-game hobbyists
call such games abandonware and argue for releasing them from
copyright. For example open sourcing abandonware is not possible if
the copyright situation is unclear and so the only option to reduce
the legal risks of distributing and copying such games would be to
amend the copyright’s term.

3.2.5 Compensation Mechanisms

There are numerous ways to receive compensation from copyrighted
works. Maybe the most evident is to collect direct fees for all restricted acts
as defined in the copyright law. A good example here is the model pre-
sented by Landes as Posner where copyright holder collects licensing fees
(royalties) from restricted acts such as copying and distribution.'”

Licensing fees can be also addressed through a government-controlled
system. The idea is to collect some kind of taxes from all users and then
divide them according to some democratically decided criteria. This is for
example the model used by copyright collecting societies for composers
and recording artists.

13 One of the most popular classic game website on the Internet, Home of the Underdogs, dis-
tributes currently over 4000 more than five year old games, which are still playable today. See
http:/ /www.the-underdogs.org/

1% Landes and Posner (1989).

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 66

In large scale collective compensation systems were used in the
former socialist countries where they covered basically all kind of
works. Although it is difficult to judge the relevance of socialist
copyright to the recent discussion on digital copyright, it is interest-
ing to learn how their system was designed. In Soviet Union authors
were compensated according to royalties set in the government regu-
lation. Factors that affected the royalty rate of e.g. books were its
length, genre, copies printed, and the quality determined by the
state. Royalty rate didn’t depend on the price or copies sold.'®

The soviet system aimed to compensate authors as other workers
based mainly on the quality and quantity of their output. Unfortu-
nately, the system didn’t work in practice that way. Secondary issues
like the number of characters in the work became sometimes deter-
mining factors. There was also a clear incentive to overprinting.'"
Nor was the system equal; in practice some well known and gov-
ernment favored authors were exempted from the state set schedule
and received higher royalties compared to others.'”® So while the
pricing system based on private royalties might not work optimally,
it is difficult to find any historical evidence supporting collective
compensation systems either.

Compensation systems based solely on licensing fees are, however, easy
to criticize. In fact authors receive a substantial part of their compensation
through other more indirect mechanisms than licensing fees. One way to
categorize these alternative indirect compensation mechanisms is:'*®

1. Making copying expensive. The idea is that the one who possesses
an intellectual creation has the possibility to technically protect
access to his creation through different “barbed-wire” construc-
tions. Even if the copying of the work is illegal, the author may

10 On the Soviet remuneration system see e.g. Newcity (1978), p. 84.

1! In the 1970s Soviet Union printed slightly more books than the US. Ibid., p. v (referring to
United Nations’ statistics).

192 [bid. p. 92.

1% See e.g. Novos and Waldman (1986), p. 10-16, Palmer (1989) and Watt (2000), p. 54-58.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 67

have an incentive to make copying more difficult because of the
limited scope of copyright and obvious enforcement problems."**

2. Complementary goods. Another product may be a necessary condi-
tion for the use of the work or an optional profit-generating fea-
ture or service; thus their sales are bundled. Also advertisements
can be counted in this category.

3. Timing. Author may control the timing of the work introduction
and make advance contracts before anything is created. Also, the
author may try to introduce new versions of the work so quickly
that copies are always out-of-date.

4. Pricing and quality control. If illegal copies cost more and are sub-
stantially of inferior quality than legal copies, then there is little
incentive to copy. Pricing low can be an efficient strategy espe-
cially when the market has positive network effects.

Open source businesses were analyzed first by Raymond as alternatives
to the licensing fee model. He argued that there existed open source busi-
nesses based on complementary services and support, complementary
goods such as manual and hardware, trademark licensing and gaining
market share for proprietary products.'® These essentially cover comple-
mentary goods, timing and pricing from the indirect compensation alter-
natives listed above.

3.2.6 Is Software Copyright Inefficient?

In the recent years, a number of reform proposals for copyright have

been suggested. Some of the most prominent include:

1. Patent-like copyright. Essentially, copyright would require registration
and would have a shorter term. In a way, this would make copyright

more like real property, but for a strictly limited term.

164 See Besen (1987) for the first comprehensive economic analysis of technical protection
mechanisms.

1> Raymond (2001).

1% See e.g. Lessig (2001).

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 68

2. Alternative compensation mechanisms. As discussed in the previous
section, these include in addition to the private reward systems also
collective government-enforced systems such as hardware levies -
which are currently widely used in Europe for other works but soft-
ware - and compulsory licenses.16”

3. Abolition of copyright. Some technology activists keep on arguing for
the cause. In addition, some academics skeptical of the efficiency
of copyright use such arguments if not directly then in between the

lines.169

It can be argued that these reform approaches do not aim for a more
balanced copyright but merely to some extreme. Maybe the copyright dis-
cussion lives on just because there are extremist proposals from both those
who advocate for more protection and those who advocate for copyright
reform.

It must be stressed that the core of the copyright reform discussion con-
cerns mainly the entertainment industries. From the perspective of software
industry, these proposals have less validity. As noted, the term of software
copyright is not relevant if the life-cycle of programs is short. Private com-
pensation mechanisms from licensing fees to alternative models for soft-
ware in fact work for software products as compared to music and movies.
Piracy rates at around 30% tell that despite the fact that almost any pro-
gram can be downloaded for free from peer-to-peer networks software us-

ers simple don’t do that at such a scale that would render licensing busi-

'’ For these collective means, see e.g. Fisher (2004). Again, just like the soviet copyright system,
hardware levies are based on the claim that it becomes cheaper for the society to organize a col-
lective and centralized compensation mechanism rather than monitor and enforce private li-
cense agreements between individual economic agents. Specific problems with levies are that
they do not affect directly the behavior of economic agents (copying of works) and, in addition,
levies may have unwanted consequences (less recording capacity in use). In short, it can be
questioned why users should pay in the first place to authors in order for them to avoid their
possible future costs from illegal copying.

168 For a modern classic rant, see Barlow (1994).

1 E.g Lemley (2004).

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 69

ness obsolete.’”0 On the contrary, the absence of copyright collecting socie-
ties in the software industry suggests that even individual authors and
small software companies can effectively license their copyrighted soft-

ware products to mass markets.

3.3 Economics of Software Innovation and Patents

Economists have often compared software production to industrial in-
novation. A traditional argument support patents as ex ante incentive to
appropriate innovation ex post. A closer look at software innovation how-
ever shows that patents are used rather as strategic assets to influence
competitors than means to appropriate innovation. Optimal software in-
novation may in fact follow an open and collaborative innovation para-
digm where innovation is appropriated through alternative means.

3.3.1 Innovation in the Software Industry

It has been questioned whether there is innovative activity in software
development in the first place. Many well-known programmers do not re-
gard themselves as innovators but rather as authors. For example, the crea-
tors of major modern operating systems have compared the design and
development of operating system software to writing."”! They don’t think
that new software innovation is “discovered” but merely implemented.

For the purposes of this study, let's however assume that software de-
velopment can be analyzed in the terms of innovative activity as most
economists do. For example Torrisi identifies in his empirical study three
categories of software companies from innovation management perspec-

tive:!72

17 Of course, in traditional sale of goods a loss rate of 1/3 would be devastating. In an informa-
tion good licensing business, however, the rate is viable. As was noted, the copyright holder
may in fact benefit from increased user base if he develops alternative means to benefit from
network effects.

71 See for example Conner (1998) for Tim Patterson’s comments (MS-DOS) and Stapleton (2004)
for Richard Stallman’s comments (GNU/Linux). It must be noted that some programmers may
emphasize the literal aspect of software development simply because it is a way to object soft-
ware patents. Patents can be granted only to “innovations” as defined in patent laws.

1”2 Torrisi (1998), pp. 122-126 and pp. 162-163.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 70

1. Entrepreneurial start-ups (about 5 years old). These companies create
new innovations. They are operated by flexible organizations and do
not use engineering techniques since it is difficult to codify their
practices.

2. Small and medium sized companies specializing in few products or
services (more than 5 years old with less than 500 employees). They
make incremental product innovation (quality, differentiation) and
mainly contribute in the diffusion of innovations. These firms rely on
centralized management.'”

3. Large corporations offering system software and services (more than
500 employees). Their role is in the creative blending of innovations
from various sources. Corporations rely on formal rules in innova-
tion management.

Innovation in the software industry can be characterized as serial and
cumulative:

- Serial (or continuos) innovation builds on the existing innovations.

- Cumulative (or incremental, sequential) innovation is based on sepa-
rate small innovations that together build the product together. In
computer technology, many innovations come from complementary
technologies."”* Cumulative innovation implies fragmentation prob-
lem.

We can also distinguish between continuous and radical innovation:

- Continuous innovation builds on the top of existing innovation mak-
ing better technology in small steps

17 According to Torrisi, most European firms belong to this category. He also notes in pp. 158-
159 that between 1990 and 1997 European firms have shifted their focus to new product inno-
vation and both copyright and lead-time have increased importance as tools to appropriate
rent from innovations.

7 Torrisi (1998), p. 112.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 71

- Radical (or disruptive or revolutionary) innovation completely
changes the market structure'”

Technically, software products typically evolve through number of
minimal new innovations, which are built and depend on previous knowl-
edge. Radically new innovative products that change the markets funda-
mentally appear more likely from long socio-economic processes. It is also
relevant to understand the context or level where such radical innovations
come from. In a networked environment, the role of users as innovators
becomes central and the overall social aspects of innovative activity are
strengthened."”® Thus, networked innovation also increases interdepend-
encies and cross-licensing possibilities between different types of compa-
nies."”’

3.3.2 Difficult Relationship Between Innovation and Patents

Schumpeter famously explained innovation with legal and other institu-
tional structures that create incentives."”® Economist then went on to argue
that strong patents are the institution, which optimally maximizes innova-
tion."”” The innovation argument was difficult to criticize. Without innova-
tive activity and entrepreneurship the technical progress in society would
stall and no new value would be created. Hardly anyone wants to stop in-
novative activity. It seems, however, that academics now disagree on the
criteria for institutional structures that really promote innovative activity.
Strong patents in particular have been questioned.

Already in 1958, Machlup pointed out famously in his seminal study on
the US patent system as follows:

17> Christensen (1997). Already Dosi (1982), pp. 151-157, presented a theory of technological
development through disruptive innovations (using term “radical technological change”) fol-
lowing Kuhn's (1968) classic presentation on scientific revolutions.

176 See von Hippel (1988) generally on users as innovators and von Hippel (2002) specifically on
open source users as innovators. Tuomi (2002) has discussed extensively the social aspects of
innovation networks.

177 Teece (1986)

178 Schumpeter (1942).

7 E.g. Nordhaus (1969) argued for strong patents because of their ex ante incentives. Kitch’s
(1977) prospect theory further suggested that strong patents have several ex post benefits such
as efficient coordination of future innovations and reduction of transaction costs.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS o 72

“None of the empirical evidence at our disposal and none of the
theoretical arguments presented either confirms or confutes the be-
lief that the patent system has promoted the progress of the technical
arts and the productivity of the economy.”

Today, debate on the economic effects of patents is furious. Granted, his-
torically computer and software industries have had rather weak patent
protection and still nobody has questioned that the fields have been very
innovative. Some economists have presented empirical evidence against
strong patents especially in the software industry. It seems that in those
fields of technology, where patents have been taken into use, investments
to research and development have slowed down.' Other economists de-
fend software patents arguing that the major issues are in the patent qual-
ity. According to them, patents are a major incentive for innovation also in
the software industry.'"

Interestingly, open source software provides one more argument refut-
ing the necessary connection between innovation and patents. Also open
source licenses can be seen as institutional structures for creating new in-
formation and innovations. In the open source world, the most significant
resource of innovations is individual participants, and the use of patents is
explicitly disallowed.” The numerous possible means of individuals to
share and exploit their tacit knowledge affects undoubtedly innovative
processes. Thus, one could argue for a Hayekian explanation for an open
source innovation where individuals spontaneously cooperate within a
structure governed by the license in question.'®

To conclude, whether patents promote innovation or not, they have cer-
tainly other functions as well. For example Levin et al noted from exten-
sive interviews that many companies patent to monitor who are the inno-
vators within the company.'® Also, patents may be collected for purely
regulatory reasons; for instance some developing countries have required

%0 E.g. Bessen and Maskin (2004).
81 E.g. Jaffe and Lerner (2004).

82 yon Hippel (2002).

1% Hayek (1945).

18 Levin et al (1987).

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 73

technology licensing in order to enter their markets.'® But most often, pat-
ents are often analyzed in the context of corporate strategy where their
function is to leverage market power by affecting the behavior of other
companies.

3.3.3 Patents as Strategic Assets

In recent years, numerous studies have been published on the actual use
of patents in the software industry."® Large IT companies currently apply
for more patents than their counterparts in other technical fields. How-
ever, software patents are used not only to create licensing income but
they are increasingly used for strategic reasons. Collecting strategic patent
portfolios can be use in e.g. signaling to investors, entry barriers to new en-
trants, offensive or defensive assets in litigation and for cross-licensing
purposes.'®’

Stac v. Microsoft is an example of strategic use of software patents.
Microsoft settled with Stac Electronics over a software patent issue in
1994. Stac had filed a suit alleging Microsoft infringed their disk
storage patents.”®® After jury had awarded Stac 120 million dollars in
damages, the case was settled with Microsoft paying Stac 40 million
and buying their stock. The case has been viewed both as an example
of a successful software patent protecting a new innovation and as a
strategic legal effort of a struggling company to stay alive at the cost
of technological development. Stac Electronics went out of business
soon afterwards mainly because they lost their technological leader-
ship and it was rather easy to “invent around” their patent portfolio.

The strategic nature of patents is strengthened by the fact that in order
for patents to be useful in practice, companies need to have plenty of them.

'8 This is an interesting result as it is generally known that the costs of absorbing innovation
can be high; obviously the patent system does not help in this regard as it should.

1% It must be noted that many of the recent studies are connected to the policy discussion of if
and to what extent innovations implemented in software should be patentable. Because of this
close policy connection, some studies may be seriously flawed.

87 Bessen and Hunt (2004).

188 See Stac v. Microsoft (1993).

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS o 74

It has been estimated, that in the United States around 1.5% of all patents
are ever litigated and as few as 0.1% are litigated until trial." Further, as
many as 46% of all patents litigated to trial are finally held invalid.'”
Thus, Lemley and Shapiro have characterized patents not as exclusive but
rather as “probabilistic” property rights."” Since not every patent is truly
valuable, companies have an incentive to build as large patent portfolios as
possible if they ever want to enter the patenting game.

Finally, we must note that increasing patenting by big companies does
not necessarily mean that small software companies or independent de-
velopers would suffer and innovation would be stalled. As we will see
later, it seems that those who have patents mainly use them against each
other if the “patenting warfare” ever enters an active state. The dynamics
of the patenting game includes the rather surprising finding that big com-

panies protect for example open source developers with their patents.'”

3.3.4 Different Means to Appropriate Innovation

Obviously, the appropriation of software is complex since software is
cheap to replicate and the intellectual property protection and enforcement
is far from complete.'”® According to Torrisi’s empirical study, legal tools
are specifically considered a weak instrument of appropriability in the
software industry. '** In addition to legal means such as copyright and pat-
ents, at least the following methods are possible for appropriating returns
from software innovations:'”

1. Lead time. Being first-to-market is according to empirical studies the
most important way to appropriate returns. Strong sales and market-

' Lanjouw and Schankermann (2001) and Lemley (2001).

" Allison and Lemley (1998).

I See Lemley and Shapiro (2004) pointing out that many economic theories on patents build
on the unrealistic assumption that patents would be well-defined exclusive property rights.

12 Chapter 6.

19 See Teece (2000), pp. 16-19, who differs between weak — moderate — and strong appropriabil-
ity. He argues that hard replicability and strong intellectual property protection increase ap-
Propriability conditions.

 Torrisi (1998), p. 109-110. However, the importance of legal protection was growing during
the 1990s and its was found more important than secrecy.

1% Levin et al (1987), Torrisi (1998).

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 75

ing efforts may be essential to establish a strong position over fol-
lowers.

2. Continuous improvement. Close to the lead time alternative, being
technically (in quality) ahead the competition also impacts returns
according to empirical studies.'”

3. Skilled personnel. It can be argued that state-of-the-art innovations
prepare the innovator to adapt into the future technical changes bet-
ter. This also suggests that companies should involve in develop-
ment themselves and avoid the “not-invented-here” trap.

4. Secrecy. Many studies have shown that secrecy is relatively the least
useful, though also possible mean for appropriation.

The little empirical research available shows that lead time, continuous
improvement and skilled personnel have been in practice more important
appropriation tools than copyrights and patents.'”’”

However, while legal protection may be a weak appropriation tool,
copyrights and patents also open up possibilities to appropriate returns
from the complements of innovation.'”® For example tacit knowledge re-
quired to use the innovation can’t be protected directly by legal means but
can be used as a sales argument for the software itself."”” It must be noted,
that patents may work against these market based incentives for software
innovation. While with copyright different methods were complementary,

in patents, they are more clearly alternatives.

3.3.5 An Open Innovation Model

New models that propose courageous outsourcing and free flow of
ideas over company boundaries have questioned the traditional innova-
tion management behind the closed doors of a company. Already Coase
noted that if communication technology drives the costs of outsourcing

1% E.g. Liebowitz and Margolis (2001) argue that Microsoft gained its dominant position in of-
fice software markets (text processing and spreadsheets) not because they were first to market
or had intellectual property advantages but because their software was technically superior.

7 Torrisi (1998), p. 109-110. Levin et al (1987).

1% See eg. Teece (2000), p. pp. 115-

19 Arora et al (2004), pp. 115-117.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 76

through the markets down more than organizational costs, it is arguably
rational to reduce the size of the company’s internal activities.”” Now, just
because the acquisition and management of exclusive rights to the results
of innovations is costly and, on the other hand, communication and volun-
tary cooperation costs on the markets have become down, it makes sense
to consider an open model for most innovative activities.

Chesbrough presents one possible model:

Research Development

O * Firm boundary

- Research project

Figure 10. An open innovation model.””"

Roughly put, there are typically many research projects only a few of
which ever enter the technological development stage. Cooperation and
free exchange of research information across company boundaries may
lead to new outside development projects, which combine innovatively
the existing knowledge base. Later on, the company may have an advan-
tage (based on prior merits to help launching the project) to benefit from

20 Coase (1937).
2! Chesbrough (2003), p. 189.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS o 77

such external projects for example through informal knowledge exchange
and licensing.*”

This kind of open innovation model has obvious similarities to the eco-
nomics of science. *® Informal disclosure of new information, exchange of
research workers and the culture of cooperation may optimally produce
new innovations more efficiently than closed technology projects. It is also
well argued that an open source development model closely reminds that
of the scientific research.”

We can find many economic reasons for profit-seeking companies to
participate in basic research and vice versa. For example Foray has pro-
posed that it makes economic sense to freely reveal research and develop-

ment information if:?®

- Reward systems address the issues of free copying and distribution.
This comes back to alternative compensation mechanisms and inno-
vation appropriation discussed above.

- Companies are required to use reciprocity obligations to participate in
development cooperation.

- Companies are interested in improving the average performance of the
industry. For the software industry e.g. the development of more se-
cure Internet infrastructure could be one area.

- Companies have an open source strategy, which implies that others
have no incentives to commercialize inventions through proprietary
means

A difficult question is how open innovation affects proprietary software
development models in the software industry. One can argue that proprie-
tary models won't disappear overnight even though companies would
adopt open innovation models. Also proprietary licensing models can be

2 In the case of open source licensing terms, every company is theoretically in the same line
though. However, the initial developer may still have the advantages of leadership, tacit
knowledge and informal relations within the project.

% See Dasgupta and David (1994) for an overview of the differences and synergies between
“The Republic of Science” and “The Realm of Technology”.

2 See e.g. Kelty (2001).

% Foray (2004), pp. 179-181.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 78

adapted to allow knowledge sharing and exchange to some limited extent
without losing development control and ownership over copyrights and
patents.

3.4 Competition Policy and the Limits of Exclusive Rights

Private property rights, intellectual property rights part of them, are
commonly seen as a necessary condition for the creation of free markets.
For instance North belongs to intellectual property optimists: he links
them to technological change and defends the idea that only well-defined
property rights to innovation can guarantee market-driven continuous
economic development.*”

However, also state intervention to intellectual property markets can be
justified in economic terms. Historically, states had interest to censor the
printing press and intellectual property rights developed in many jurisdic-
tions as part of censorship laws. In modern times, state interest has shifted
from censorship to guarantee the efficient functioning of free markets. The
interest is now in the intersection between competition policy and intellec-
tual property. It has turned out that software industry has been specifically
vulnerable to market failures.

As noted earlier, software and computer industries have presented
many textbook examples of inefficient monopoly behavior. Some of
the history's biggest anti-trust lawsuits have been raised against
computer and software manufacturers. Until the 1990s, IBM practi-
cally dominated the software industry for decades. IBM was consid-
ered for anti-trust claims in the United States starting from the late
1960s for bundling software with hardware. At that time IBM made
it impossible for any company to sell software since IBM gave soft-
ware for free with their industry standard hardware.

In the 1990s, when Microsoft had grown to be the monopoly soft-
ware system on personal computers, the United States Department
of Justice filed several anti-trust suits against the company demand-

2% North (1981), p. 162-166.

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 79

ing among others that Microsoft should release some of their soft-
ware in a non-exclusive way, possibly open source. Also the Euro-
pean Union has investigated Microsoft's practices. The company has
been accused of e.g. bundling web browser and multimedia player
software to its de facto operating system standard efficiently eroding
the market of small companies offering competing software prod-

ucts.2”

The basis of the monopoly problem is in the economic laws of networks.
Winners are winning more. Intellectual property rights can further con-
tribute to their monopoly power: an incumbent company may have the
power to exclude others from markets through the execution of copyrights
and patents. Such arguments have been repeated for example in the Mi-
crosoft case. However, the same economic laws of networks and intellec-
tual property may also work for increasing competition. As Posner re-
minds, “competition to obtain monopoly is an important form of competi-
tion” 2%

Many economists argue that monopoly situations in the software indus-
try are inefficient for the society at large. Poorer quality software will be
produced because of decreased competition. Innovation will be stifled.
However, Liebowitz and Margolis have argued that specifically Micro-
soft's monopoly position in office applications is not the result of lock-in,
network effects and predatory pricing but simply because they have tech-
nically better products. When Microsoft was in the markets, the prices
dropped in fact faster than in those markets where Microsoft was not pre-
sent. Hence, they claim that consumer's will never lock-in to inferior prod-
ucts.?”

The impact of open source to the IPR competition policy debate is per-
haps two-fold. First, there is little doubt that the growing popularity of
open source software and associated open standards has once again in-

*7 For an overview of the recent developments in Microsoft cases see e.g. The Economist
(2004a). Microsoft suits have also highlighted the challenge — as with many other legal issues —
of geographical reach of the applicable laws. The possibilities of even the US and EU to influ-
ence the behavior of the world’s biggest computer and software companies are limited.

2% Posner (2002), p. 248.

* Liebowitz and Margolis (2001).

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 80

creased competition in the software markets. There is no software com-
pany that could dominate the Internet as the de facto communication plat-
form. For example Microsoft's attempts to “extend and embrace” its pro-
prietary standard extensions to the Internet (web pages and email) have so
far been failures. Interestingly enough, Microsoft has already used the
growing popularity of open source as a defensive argument in their com-
petition lawsuits.*"

Second, and quite paradoxically, one can also argue that open source
may decrease competition in the long term. If open source in the sense
Free Software Foundation pushes it forward becomes standard in specific
application domains, it may severely limit proprietary licensing possibili-
ties and in the end take incumbent proprietary software companies out of
business. For example SCO has used such arguments in its case against
IBM: if Linux becomes a de facto Unix standard, there may be no markets
for proprietary Unix licenses in the future.”"

3.5 Summary: Economic Rationale of Open Licensing

There are at least three kind of economic lines of reasoning to support
the idea of open rather than proprietary software licensing. If we view
software as:

1. A copyrighted work, then strong network effects and aim for market
share support openness. The ability to use price discrimination sup-
ports the idea of more rights to certain groups of users. Further, in
addition to licensing fees for copying and distribution, there are
many alternative economically sustainable ways to generate income.

1% See Microsoft’s appeal brief in US v. Microsoft (2002) from November 27, 2000 where the
company states that “[Linux supporters] could quickly expand their output to satisfy the entire
demand for operating systems among OEMs if Microsoft were to stop innovating or begin
charging a supracompetitive price for Windows”.

2 See SCO v. IBM (2003), where SCO among others charged IBM on unfair competition since
by supporting Linux “...IBM has engaged in a course of conduct that is intentionally and fore-
seeably calculated to undermine and/or destroy the economic value of the UNIX Software
Code anywhere and everywhere in the world, and to undermine and/or destroy plaintiff’s
rights to fully exploit and benefit from its ownership rights in and to UNIX”

ECONOMIC PRINCIPLES OF SOFTWARE PRODUCTS e 81

2. A system product, then compatibility is a strong argument for open-
ness. However, many times open interfaces are enough for compati-
bility and open source code does not bring any additional benefits in
this sense. Also a desire for lock-in and path-dependence speak for
non-compatibility.

3. An innovation, then the cumulative and collaborative nature of inven-
tions supports the idea of an open innovation process. Exclusive in-
tellectual property protection is just one of the alternative means to
appropriate innovation among lead-time, continuous improvement
and skilled personnel. For example software patents have proved to
be in practice rather an expensive strategic asset rather than an ap-
propriation tool.

Overall, the economic theories of networks, copyright and patents em-
phasize a strategic approach towards a software licensing decision. Soft-
ware companies need to consider additional environmental factors in in-
tellectual property licensing and not limit their thinking into the tradi-
tional pricing issue. To simplify the picture, one could argue that much in
the economic theory behind open source licensing is just another incarna-
tion of the “Internet economics” of the late 1990s. For sure, unconditional
exclusivity is doomed on the Internet. However, to succeed commercially
one may not be able to “follow the free” until the bitter end.*'*

12 For example Kelly (1998) famously popularized network economy into short liners such as
“Follow the free”, “To maximize innovation, maximize the fringes”, and “Sooner or later closed
systems have to open up, or die.”

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 82

4 INTELLECTUAL PROPERTY AND ITS DISCONTENTS

This chapter discusses the evolution of legal and technical protection of
software. Some commentators have criticized that the continuous expan-
sion of different overlapping intellectual property laws over software has
implied that the law is now substantially out of balance. We end the chap-
ter by reviewing the evidence and discussing the possibilities of private
balancing of intellectual property laws through open source.

4.1 Challenge of Software Protection

Since the emergence of computers after the Second World War, there
was intensified academic discussion of the legal status of software. The
main alternatives of copyright and patents were under closer study al-
ready in the 1960s.*®

4.1.1 Early Discussion and Practice

First patents. The first form of intellectual property explicitly granted to
software was probably patent.”'* In Germany, two computer scientists pat-
ented what may constitute a software algorithm as early as in 1957.*"° In
the United States, there was also increasing pressure towards the Patent
Office to start accepting software patents”® Applied Data Research’s

3 See e.g. Puckett (1966) for an overview of the early discussion on both software copyright
and patents in the United States and Koktvedgaard (1968) for discussion in Europe.

4 To be precise, software can’t be (legally) patented. Only inventions can be patented. If an in-
vention is implemented in software, however, one can speak of software patents. Thus, in legal
jargon, the discussion is usually about “computer-implemented inventions” when the issue at
hand is essentially software patents.

5 German patent (DE 1,094,019) was filed March 30th, 1957. It was also patented in at least the
United States (US 3,047,228), France (FR 1,204,424), and England (GB 892,098). The invention is
described in Samuelson and Bauer (1960). Johnsen (1969) points out that there were a number
of early German patents (DE 218,524; DE 255,921; DE 314,001; and DE 314,001) granted for me-
chanical calculators.

16 Hirsch (1966) reported (p. 79) from a US Patent Office’s public hearing on the issue that “so
many answers were volunteered that it will probably be awhile, if ever, before program patents
are granted”. The magazine also explained that the issue of software patentability had created
“a sometimes-acrimonious debate that has been droning on for at least 10 years”.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 83

(ADR) became the first company, which was granted a software patent in
1968 with commercial importance.?”

Other companies followed ADR'’s lead.”® Another early commercial
patent applicant was Whitlow Computer Systems, which was able to pat-
ent a hidden sorting feature in System/360.*" Withlow also competed with
IBM’s bundled software. Company founder Duane Whitlow later ex-
plained:

“I knew it was patentable because Marty Goetz had started the
ball rolling in that direction. We had found one instruction in the
System /360 computer that made a dramatic improvement in per-
formance. Although there were significant other aspects of the sort
that are included in the patent, I knew this aspect was a break-

through and anchored the patentable methodology.”**

The early practice of patenting came to a temporary halt in the 1970s.
Neither courts nor patent offices accepted patenting as the legal form to
protect software during the decade.”” When personal computers were in-
troduced and become popular in the late 1970’s, the volume of developed
software increased enormously and new firms entered the industry. Pat-
enting clearly wasn’t an option in such a rapid restructuring stage.

27 Martin A. Goetz, the head of Proprietary Software Division of ADR, was named as the in-
ventor of US Patent 3,380,029 — “Sorting System”, April 23, 1968. For more background see de-
scription of ADR’s Software Products Division Records in ADR (2003). ADR also sued IBM (not
related to the patent) for mischaracterizing the features of its bundled flowcharting program
and joined the so-called antitrust suit. The background was that ADR competed with IBM’s
bundled flowchart software on System /360.

8 It should be noted that the opinions on software patentability were mixed within the indus-
try. For example IBM remained opposed to software patents although it could have applied
them easily. See e.g. Hirsch (1968).

2 U.S. Patent No. 4,210,961 - also titled “Sorting System” of Duane L. Whitlow and Azra Sas-
son, was finally issued July 1, 1980

20 Bride (2002).

21 US Supreme Court cases Gottschalk v. Benson (1972) and Parker v. Flook (1978), although
carefully limiting the decision to the particular facts of the case, denied software from pat-
entability in the United States. European Patent Convention was signed in 1973, which ex-
cluded software from patentability in Europe. Also EPO’s 1978 Patent Examination Guidelines
confirmed the rule.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 84

Copyright. While patents dominated the industry discussion, the first
US copyright registration for a software product was recorded already in
1964. The need to clarify the legal status of software continued to grew
especially as software mass markets were about to form towards the late
1970s. Companies started to develop “shrink-wrap” contracts into soft-
ware packages because it wasn't clear if software copyrights to non-literal
object code were valid at all.**

The problems of copyright were illustrated in the case Data Cash Systems
v. J[S&A Group a company lost a copyright suit against a competitor that
sold its computer game without authorization.””* The competitor had liter-
ally copied object code from a physical game-module, then repackaged
and commercially distributed it. The lower court decided in 1979 that
copyright did not cover “object code”. Further, appeals court stated that
the game wasn’t even under copyright since it lacked proper copyright no-
tice; there was one in the manual but not in the game module itself.

Sceptical practise. Despite the heated discussion, many corporate soft-
ware companies were not that worried about the fuzzy status of legal pro-
tection of software. A good example is the conclusion from an industry
study in the 1970s where over a hundred software companies answered
questions about the legal context of software licensing:

“Many of the firms surveyed were not greatly concerned with le-
gal protection of software; many chose not to answer the question on
preferred mode of legal protection. Those who did answer displayed
a strong preference for contractual restraint through trade secrecy
over either patent or copyright. ... only a small minority (4 percent)
of respondents reported having abandoned the development of a

program for lack of protection.”**

*2Band and Katoh (1995), p. 71.

3 See e.g. Tyler (1986) pp. 11- for coverage of the early discussion.
#*Data Cash Systems v. JS&A Group (1980).

25 Miller et al (1978), part of CONTU.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 85

Thus, the early interest in the intellectual property protection of soft-
ware was largely academic and bureaucratic. There wasn’t any intellectual
property licensing business in software at that time.

4.1.2 WIPO'’s Proposal

World Intellectual Property Organisation, founded in 1967, started to
prepare provisions for the international protection of computer programs
in the early 1970s.** The work was completed in 1978. Instead of propos-
ing direct amendments to copyright or patent treaties, WIPO drafted a
model law based on a sui generis approach. The motivation was that soft-
ware required specific kind of intellectual property regulation, which
didn’t adequately fit into either copyright or patent laws.*”

Substantially, the model provisions stated that:

- New regulations would only complement copyright and patent
laws and not replace any intellectual property protection already
given to software

- A copyright approach in general should be taken regarding the
protected rights (covering only literal copying but no independ-
ent creation)

- Following the principles of patent law, also the commercial use of
software should be protected whether involving copying or not

- Also following the principles of patent law, the term of protection
should be limited to twenty years

- An optional registration system should be considered to encour-
age the dissemination and disclosure of software

26 See WIPO (1971) for the first international meeting and agenda setting. IBM had already
proposed a sui generis approach to the US Patent Office a decade earlier. See Galbi (1970) for
details and also Hirsch (1969) indicating for an initially positive reaction to IBM’s proposal by
the US Patent Office. In Europe e.g. Koktvedgaard (1968) supported sui generis approach over
patents and copyright.

? The model law approach was taken mainly because it was felt that the regulation of com-
puter programs should first develop and stabilize to some extent before the rules could be
harmonized. See WIPO (1978).

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 86
The provisions further explained in a general utilitarian spirit that:***

“The primary purpose of the protection granted is not to allow
proprietors to profit from a period of exclusive rights as a reward for
the creation and disclosure of computer software, but simply to en-
courage creation and dissemination of computer software and to
prevent the misappropriation of the results of another’s valuable
work...”

Despite its well-thought intentions the model provisions were not im-
plemented into national legislations as such. A further attempt to prepare
a new international treaty on the legal protection of computer programs
was dropped in 1983.** Instead, copyright laws were simply amended to
include software as another new category among other literal and artistic
works. The proposed limited term and optional registration system didn’t
get enough support in the international intellectual property regulation of

software.®

4.2 Copyright and Its Limits

During the 1980s copyright laws across the world were amended to in-
clude computer programs as another category of protected works. The so-
called interoperability debate then defined the legal rights of software us-
ers in more detail. One can argue that software copyright is as of today a
settled area of law without any radical legal development in sight.

4.2.1 Software Enters Copyright Law

A decisive point towards copyright came when the US National Com-
mission on New Technological Uses of Copyrighted Works (CONTU) rec-
ommended in its 1978 report to apply only copyright to software:

28 WIPO (1978), p. 9.

9 WIPO (1983).

0 For example in a 1985 meeting, a WIPO Expert Group continued to discuss the term problem
but didn’t even mention the idea of a registration system. See WIPO (1985)

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 87

“The new copyright law should be amended 1) to make it explicit
that computer programs, to the extent that they embody an author's
original creation, are proper subject matter of copyright; 2) to apply
to all computer uses of copyrighted programs by the deletion of the
present Section 117; and 3) to assure that rightful possessors of cop-
ies of computer programs can use or adapt these copies for their

”

use.

United States was subsequently the first country to introduce a specific
Software Copyright Act in 1980; after its enactment, the unauthorized
copying, distribution and modification of computer programs has been il-
legal as copyright infringement. Other countries followed and soon copy-
right was universally preferred to other forms of intellectual property. For
example, a 1985 WIPO meeting noted that:*'

“...a great number of participants developed arguments in favor
of copyright protection of computer programs; patentability of com-
puter programs per se had been ruled out under the law of virtually
every country... copyright, in its development, had proved to be

flexible enough to extend to works of a technical nature.”

Since the late 1970s, as software mass markets emerged, also software
(shrink-wrap) licenses started to explicitly mention copyright and most
companies relied on copyright as the main legal mean to backup the li-

censing model.

4.2.2 Interoperability Debate

Issue and arguments. The limits of software copyright soon became
tested in the so-called interoperability debate. The question was whether
non-literal elements such as interfaces were copyrightable and whether re-
verse engineering should be allowed. Many leading software products in

BLWIPO (1985), p. 147.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 88

the 1980s had interoperable interfaces and the custom of reverse engineer-
ing was in most cases considered perfectly legal.

For example, MS-DOS was designed to be interoperable to some
extent with at the time popular microcomputer operating system
CP/M. MS-DOS was actually written because there was a demand
for a simple operating system running on the new Intel 8086 proces-
sors and Digital Research, the developer of CP/M, was still working
on CP/M-86 with no information on when it would be available.
Thus, a little company called Seattle Software Works decided to de-
velop one in 1981. The commands and programming interface of
MS-DOS were designed to be quite similar with CP/M and it was
also possible to translate CP/M applications to run in MS-DOS. **
Digital Research never initiated any legal action against the develop-
ers of MS-DOS nor Microsoft.”

Band and Katoh identified three lobbying groups in the interoperability
debate:**

1. Ultraprotectionists who believed that software is copyrightable and
both interfaces and reverse engineering should be protected by
copyright. Their arguments highlighted e.g. a need for logical coher-
ence in copyright law, ex ante incentive theory and the central role of
software industry in the US national economy.

2. Those who argued for a balanced view, which accepted software
copyright in general but was against reverse engineering and inter-

#2 However, in practice the interoperability didn’t always mean that much because of the rapid
technological development. Tim Paterson, the author of first versions of MS-DOS, explained:
“After making a goal of the ‘translation compatibility’, and the claims of ‘rip-off’ that resulted
because I used the CP/M manuals, it turned out the this feature was almost never used. In-
stead of blindly porting old 8-bit applications, the software developers rewrote them or started
over to take advantage of 16-bit capabilities (like much more memory).” Tim Paterson’s email
to the author on 8 June 2004.

3 The famous history of Microsoft selling Seattle’s new operating system — at the time called
Q-DOS (Quick and Dirty Disk Operating System) — in the front of Digital Research is another
story. Digital Research eventually published their CP/M-86, later renamed as DR-DOS, in 1983.
DR-DOS was never able to capture relevant market share from MS-DOS.

2% Band and Katoh (1995).

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 89

face protection in particular. The basic economic argument went that
if copyright would be given to an interface of a de facto standard
software product, then the monopoly power would also extend to
the markets of compatible software. In general, copyright to an inter-
face would cause more incompatibility in networks and less social
benefits.”

3. Advocates of minimal copyright who basically went against the whole
idea of software copyright in side with reverse engineering and in-
terface protection. This group was lead by Richard Stallman and
they relied on ideological and ethical arguments. Stallman wasn’t
very influential in the actual debate but rather served as an easy tar-
get for ultraprotectionists who tried to bundle him together with the

advocates of the balanced view.

Europe. In Europe the debate centered on the hearing process of the
proposed software copyright directive.”® There were two more or less equally
strong parties fighting against each other — a clear contrast to the US where
the supporters of interoperability had significantly less industry backup.
In Europe, a number of dominant US companies of that era (Microsoft,
IBM, Apple, Lotus, etc.) established ultraprotectionist Software Action
Group for Europe (SAGE), which was aiming to get as stringent law as
possible to curtail the European competition. They were lobbying to add
user interfaces under the scope of copyright and, perhaps more impor-
tantly, trying to ban reverse engineering altogether. To counter this threat,
mostly European companies (Amstrad, Bull, Olivetti and Fujitsu from Ja-
pan) formed European Committee for Interoperable Systems (ECIS),
which advocated a more balanced view. The latter group also received

some mixed support from the academic community.*’

5 See e.g. Menell (1989). For a comprehensive list of the arguments used by different parties
see Band and Katoh (1995), pp. 99-101.

#6 The initial intention of the directive was to merely harmonize copyright protection of com-
puter programs across Europe. In the end, the directive provided a forum to define the limits in
the substance of software copyright.

#7 See e.g. Dreier (1991), in footnote 3, listing over 10 articles on the interoperability issue pub-
lished in one particular journal (European Intellectual Property Review) during 1989-1991.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 90

In the end, the EU Commission sided with SAGE and made a proposal,
which would have made it nearly impossible to create interoperable soft-
ware. This wasn’t the end of the case, however, since the European Par-
liament chose to support ECIS instead. Parliament adopted a substantial
set of amendments to the proposed directive, including three key amend-
ments dealing with the interface and reverse engineering issues. In the fi-
nal directive text as accepted in 1991, interfaces were not under copyright
and reverse engineering for interoperability was allowed.

United States. In the US, the debate was solved in the courtrooms right
after the software directive was accepted in Europe. The first major case
was Computer Associates v. Altai, decided in 1992, where the question was
about a component that allowed software interoperability to different
hardware systems. Altai’s programmer had originally copied some 30% of
Computer Associate’s source code but when Altai became aware of the
copying, they rewrote it. Computer Associates went on to argue that also
the rewritten component infringed their copyright.

Both parties received support from other companies and different in-
dustry lobby groups. Large IT enterprises of the time including IBM, DEC,
Microsoft, Lotus, WordPerfect and Apple supported an ultraprotectionist
view. Their lobby group called Software Publishing Association (SPA) ar-
gued for Computer Associates. SPA’s position wasn’t united, however.
Borland, Novell and former SPA member Compaq explicitly disagreed
with their position. American Committee for Interoperable Systems
(ACIS), which included less known companies such as Storage Technol-
ogy, AT&T Global Information Solutions, Amdahl, and Broderbund Soft-
ware, further supported Altai and had a more balanced view.***

In Computer Associates v. Altai the court rejected an earlier judgment,
which stated that non-literal elements such as structure, sequence and or-
ganization of a computer program would be generally under copyright.*”
Instead, the court went on to argue that copyright should not cover areas

»$ Band and Katoh (1995), p. 102-, go through these different groups and their intentions.

9 In the earlier case Whelan v. Jaslow (1986) a court had stated that “... copyright protection of
computer programs may extend beyond the programs' literal code to their structure, sequence,
and organization”

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 91

where ideas merge into expression. It stated that programmers have less
design choice in:

“(1) mechanical specifications of the computer on which a particu-
lar program is intended to run; (2) compatibility requirements of
other programs with which a program is designed to operate in con-
junction; (3) computer manufacturer’s design standards; (4) de-
mands of the industry being served; and (5) widely accepted pro-

gramming practices within the computer industry”.*

Thus, the court essentially stated that interoperability is not under copy-
right. Another central case was Lotus v. Borland, decided in 1995, which
ended in the favor of Borland and also against interface copyright. Lotus
had claimed that Borland infringed the copyright to Lotus 1-2-3 spread-
sheet by copying most of the structure of its menu system. At first in-
stance, the decision was in favor of Lotus but after a complaint, a federal
circuit ruled in favor of Borland. The court noted that the question was
about a “method of operation” and stated: “the ‘expressive’ choices of
what to name the command terms and how to arrange them do not magi-
cally change the uncopyrightable menu command hierarchy into copy-
rightable subject matter” — US Supreme Court eventually took the case but
was unable to make a decision: the vote was split 4-4 and the earlier deci-
sion became final.

4.2.3 Current Extent of Software Copyright

Copyrightability. It is now well founded that copyright covers any
original computer program as a literal work whether it is in source code or
object code form. For example, according to software copyright directive,
“Member States shall protect computer programs, by copyright, as literary
works within the meaning of the Berne Convention for the Protection of
Literary and Artistic Works”. Only original practical expression is under
copyright; non-literal elements, ideas and program functionality fall out-

0 See Computer Associates v. Altai (1992) and Band and Katoh (1995), pp. 125-126.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 92

side the copyright protection. Otherwise, copyright covers the program as
a whole and thus builds a natural legal basis for licensing.

Copying and distribution rights. The substance of copyright is to give
the author an exclusive right for the copying and distribution of the
work.?*' Within the context of computer programs, it hasn’t been usually
productive to try to define any distinction between copying and distribu-
tion since distribution usually involves copying (thus distribution being a
subcategory of copying).

However, many open source licenses do draw the line. They allow copy-
ing but may restrict distribution. This is because copying may be in certain
cases necessary for the using of software and open source does not specifi-
cally restrict the mere running of software. Moreover, it must be stressed
that copyright does not cover the use of programs in general.

Laws typically have a few relaxations to the exclusive rights of copying
and distribution. Backup copies and necessary runtime copies are usually
allowed. Also, though much more controversially, it may be legal to dis-
tribute a legally obtained copy of the software to a new user according to
the first sale doctrine.**?

Modification right. The right to modify a program is perhaps the most
central and controversial right in many open source licenses.” Namely
some licenses place restriction not on the copying or distribution of the
program as such but merely to the (distribution of) modifications.

The general rule is that whoever wants to modify a work needs the
permission of the copyright holder. In the case of software, the modifier
and the original authors typically hold the right to a modified source code

1 To be exact, copyright laws speak of the rights of reproduction (copying) and making available
to public (distribution).

21t is often noted that the first sale doctrine wouldn’t apply to digital works since they are
only licensed and no “copy” is sold when the program is distributed; however, some courts
have considered the redistribution of original copies legal on the condition that the user does
not keep any copy of the software. See e.g. Finnish Supreme Court decision KKO 2003:88 refer-
ring to the actual nature of (shrink wrapped) software licensing and the principle of free
movement of goods.

3 Since modification right (in the US, derivative works doctrine) and its interpretation is so cen-
tral in open source licenses, the right and its application is analyzed further below in section
53.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 93

jointly.*** In open source development, the crucial issue usually is, whether
a given method of using existing programs as the basis of a new one
should be counted as modification of the existing ones (and subject to the
control of the original author) or the creation of completely separate new
work.

Moral rights. Finally, copyright includes so-called moral components
the most important and universally accepted being attribution and reputa-
tion.**® Attribution means that the author has the right of recognition of his
authorship. Thus, for example the removal of author name from the work
would be an infringement of the attribution right.

Reputation means, roughly put, that the work can not be modified, al-
tered or used in any ways that would harm the reputation of the author.**
For example an intentionally low quality modification of popular open
source software with many programming errors added could infringe this
right.*’

Liability. Although copyright liability rules have not been harmonized
to the extent the substantial law in international treaties, the liability stan-
dard is uniformly strict liability. This means that the copyright holder has a
cause for action against any infringer regardless of whether the infringe-
ment has been willful or not, and even whether it has been made by a
business of by individuals. Willfulness and economic interest may only af-
fect the amount of damages and compensation awarded to the copyright
holder.**

! To be exact, a translator may be given an exclusive right to his translation. However, to
translate the work in the first place and later to market the translation, he needs the permission
of the original author.

5 Legal scholars usually speak of rights of paternity (attribution) and integrity (reputation). See
e.g. Goldstein (2001), pp. 283-. Moral rights are codified in international copyright treaties (e.g.
Berne Convention 6bis) and also in most national copyright laws a notable exceptions being the
United States.

6 Copyright also knows exceptions to exclusive rights such as parody, which may conflict
with this rule.

*7 Modification is also subject to the modification right in copyright mentioned above. Natu-
rally, such a malicious modification could be held e.g. as unfair competition and thus be
against other laws too.

¥ For example in Finland the Supreme Court has settled that the minimum compensation for a
software copyright infringement is the “standard price of a license” (KKO 1998:91). If the act is

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 94
4.3 The Return of Patents

Not everyone accepted after interoperability debate that the legal protec-
tion of software was a settled area of law; copyright had only showed its
limits. Some academics proposed the reconsideration of the sui generis ap-
proach but it never realized into actual policy proposals.** Instead, the in-
creasing use of patents rose to dominate the policy debate on software
intellectual property.

4.3.1 United States Leads

It is commonly believed that the US Supreme Court case Diamond v.
Diehr decided in 1981 was the starting point of increasing software patent-

ing in the United States. In the case, the court stated that:**

“A claim drawn to subject matter otherwise statutory does not be-
come nonstatutory simply because it uses a mathematical formula,
computer program, or digital computer.”

As we noted, there were a number of software patents granted prior this
particular case but earlier court cases had not held them valid. After Dia-
mond case, software was thought more generally to be patentable al-
though the case left some interpretation issues open. Obviously, if the in-
vention consisted only of a mathematical algorithm it wasn’t still paten-
table. Later court cases have however pushed the abstract interpretation
problems in side favoring more extensive patentability of software.”"
Thus, in 1996, the USPTO published more liberal guidelines for the exami-

willful, the compensation may be doubled and additional damages added on the top. In the
US, the amount of compensation for software copyright infringement depends also on whether
the infringer has acted willfully and, in addition, whether the copyright has been registered.

* Samuelson et al (1994) being perhaps the most influential.

20 Diamond v. Diehr (1981).

»! The most important being perhaps In Re Alappat (1994), which forced USPTO to write new
guidelines for the examination of software patents. Jaffe and Lerner (2004) argue that increas-
ing patenting in the US (not limited to software patents) was also helped by administrative
procedure in 1982 to establish a common instance (Court of Appeals of the Federal Circuit),
which held patents more often valid. In addition, USPTO had an incentive to grant more pat-
ents after it was ordered in the early 1990s to run on its fees instead of taxes.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 95

nation and granting of software patents. The guidelines essentially stated
that the utility of the invention as a whole should be examined in the first
place before a detailed assessment of whether the invention is solely based
on an abstract mathematical algorithm:**

“Office personnel will no longer begin examination by determin-
ing if a claim recites a ‘mathematical algorithm.” Rather, they will re-
view the complete specification, including the detailed description of
the invention, any specific embodiments that have been disclosed,
the claims and any specific utilities that have been asserted for the
invention.”

Software patentability received mixed response from the US software
industry. In a public hearing in 1994, companies such as Oracle, Adobe
and Autodesk opposed patentability while IBM, Microsoft or SUN were in
favor either unconditionally or proposing improvements to increase the
quality of patents.” Soon afterwards towards the end of 1990s, when more
extensive software patentability had become the norm, companies went on
to adopt more favorable public positions towards patents and started to
gather patent portfolios of their own.”*

4.3.2 Europe Follows

European Patent Convention and its interpretation practice. At the
other side of the ocean, software patents remained in the periphery for
longer. European Patent Convention, signed in 1973, stated that computer
programs were not patentable “as such”. On the one hand there was a
need for legal clarity but on the other hand it was considered important
that the development of a new industry would not be hurt by too strict

2 S Software Patent Guidelines (1996).

3 See e.g. Irlam (1998) for a collection of testimonies and other public policy material from that
eriod.

E’“ See section 6.1 for statistical evidence.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 96

definitions and a categorical denial of software patents.” European Patent
Office’s first examination guidelines from 1978 didn’t rule software pat-
ents out but stated still somewhat cautiously:

”A computer program may take various forms, e.g. an algorithm,
a flow-chart or a series of coded instructions which can be recorded
on a tape or other machine-readable record-medium, and can be re-
garded as a particular case of either a mathematical method ... or a
presentation or information ... If the contribution to the known art
resides solely in a computer program then the subject matter is not
patentable in whatever manner it may be presented in the claims.
For example, a claim to a computer characterised by having the par-
ticular program stored in its memory or to a process for operating a
computer under control of the program would be as objectionable as
a claim to the program per se or the program when recorded on
magnetic tape.”

Following the policy changes in the United States during the 1980s,
European Patent Office started to accept software patent applications more
liberally. In 1986, much like in Diamond v. Diehr, EPO decided that an in-
dustrial method implemented in a computer program and the necessary
hardware was patentable even though the innovation resided solely in the
computer program.”® In 1998, much like in In Re Alappat, EPO went fur-

ther noting that:*’

”...a patent may be granted not only in the case of an invention
where a piece of software manages, by means of a computer, an in-

5 On the negotiation history, see Beresford (2000) p. 18-20 and Munich Diplomatic Conference
(1973). Head of the committee for patentability criteria noted that: “European Patent Office
would simply have to be relied upon subsequently to interpret this expression unequivocally”.
6 EPO T 0208/84 — VICOM: ”A claim directed to a technical process which process is carried
out under the control of a program (whether by means of hardware or software), cannot be re-
garded as relating to a computer program as such. A claim which can be considered as being
directed to a computer set up to operate in accordance with a specified program (whether by
means of hardware or software) for controlling or carrying out a technical process cannot be
regarded as relating to a computer program as such.”

®7EPO T 1173/97 - IBM.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 97

dustrial process or the working of a piece of machinery, but in every
case where a program for a computer is the only means, or one of the
necessary means, of obtaining a technical effect ... for instance ...
achieved by the internal functioning of a computer itself under the
influence of said program.”

In other words, a required “technical effect” for any computer-
implemented invention didn’t require any hardware environment. After
this decision, it isn’t difficult to think that software “as such” is indeed
patentable contrary to what EPC literally says. At least it is clear that in
practice software patens have never been banned in Europe. In addition,
the practice of granting patents has not differed fundamentally from the
us.

Recent political debate. At the end of 2000, a diplomatic conference
considered whether it was time to codify EPO’s practice and remove the
“as such” language from EPC. To the surprise of many, the meeting did
not remove the language. Independent programmers, some small software
companies and open source enthusiasts had organized to lobby against the
change and in the end convinced the majority of EPC member states to re-
ject the proposal

Meanwhile, the EU Commission had started preparations to harmonize
national legislations regarding software patents.” After a consultation pe-
riod, Commission published a directive draft in 2002, where it wanted to
clarify that software was indeed clearly, but also limitedly, patentable in
Europe.” An intensive public discussion followed including open source
activists, individuals and some small software companies opposing soft-
ware patentability altogether. Mainly large software and telecommunica-
tion companies, patent attorneys, and other intellectual property special-
ists supported practically unconditional software patentability. A number

»$See EPC (2000), p. 69- and e.g. Morrison & Foerster (2000) for an overview of the debate.

» Green Paper (1997), pp. 16-17.

*0 As an important detail, the original directive proposal went against the IBM decision from
1999. It would have codified the patentability criteria largely according to the VICOM decision
from 1986.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 98

of studies were commissioned to examine the public policy benefits and
costs of software patents.*”'

In 2003, the opponents gained victory in the Parliament’s first reading.
Significant amendments were voted to the directive proposal. For exam-
ple, it was clarified that any software operation aimed at interoperability
never constitutes a patent infringement. Also, pure data processing would
never constitute a patent infringement. It defined that “the processing,
handling, and presentation of information do not belong to a technical
field, even where technical devices are employed for such purposes”. The
wind changed quickly, however. Council of Ministers favored the pro-
patent lobby in 2004. It practically erased all the amendments added by the
parliament and further modified the directive to clearly accept EPO’s prac-
tice from the 1990s. As of this writing, the directive proposal waits a sec-
ond reading at the parliament. Changes are possible.

The European discussion has differed from the US in several respects. In
the US the patentability critique is targeted towards the requirements of
novelty and inventiveness — not towards a categorical limitation of soft-
ware patentability (“as such” -language). In the long-term, issues in the ac-
tual use of patents such as competition policy, limitations on liability and
patent claim interpretation have become more relevant than patentability
criteria. Perhaps the European discussion will again follow the US and
move on to the critique of the patent system as a whole after the directive
process is finally complete.

4.3.3 International Policy

United States and different trade organization pressures have pushed
countries all over the world to generally provide up-to-date patent laws
providing, for example, legal protection to pharmaceutical innovations.
Software has followed in the side. Critics have argued that software mar-
kets differ significantly from pharmaceuticals. Since software development
is generally not that capital intensive, even companies from developing
countries may be leading inventors.

%1 Gee section 6.2 for a more detailed discussion.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 99

This makes one ask what are the possibilities of each country to have a
specific policy towards software patents? The Treaty on Trade Related As-
pects of Intellectual Property Rights (TRIPS) signed in 1994 as part of the
World Trade Organisation’s (WTO) Uruguay Round negotiations, sets
minimal rules for national patent laws. Article 27 of the treaty states:

“...patents shall be available for any inventions, whether products
or processes, in all fields of technology, provided that they are new,
involve an inventive step and are capable of industrial application”

It has been frequently debated whether article 27 requires that every
country should accept software patents.*®® There seems to be nothing in the
wording of the article, which would limit the patent protection of soft-
ware. However, a detailed legal interpretation of the article isn’t that sim-
ple. One can go the basics and ask how to define a software invention. Can
software be invented at all? Are software inventions capable of “industrial
application”?

Clearly, TRIPS treaty can be used as an argument for wider software
patent protection and, still, it leaves enough room for sound economic pol-
icy discussion, which takes into account the interests of the local software
industry and consumers. Both very wide and narrow patentability of
software is possible. In the Unites States, as an extreme example, the field
of patentable inventions has gradually extended from software to include
even “business methods” and other more abstract ideas.

4.3.4 Current Extent of Software Patents

Patentability. Only inventions that are new, include an inventive step
and have industrial application can be patented. In Europe, inventions
must also meet the requirement of technical effect. As is usual with such

%2 See e.g. Foundation for Free Information Infrastructure (2004) questioning that TRIPS would
imply software patents.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 100

legal definitions, the requirements for patentability have almost as many
interpretations as there are readers.*”

The US patent law does not mention software or computer programs.
European Patent Convention instead does, but as noted above, in practice
it doesn’t categorically limit the patentability of software.*** It is commonly
believed that the European Patent Office has accepted thousands of pat-
ents, which can be counted as “pure” software patents.*”

Although patentability criteria has many similarities between the US
and Europe, there are some differences. Therefore, it is relevant to note
that US patents are not valid in Europe and vice versa. Thus, if software
based inventions are more easily patentable in the United States, the effect
of US patents must be taken into account only in the US markets. Also the

implications of patents to open source development should be local.

Rights and exceptions. A valid patent gives the innovator an exclusive
right to the commercial use of the invention. For example the making,
marketing and selling of a product that includes or indirectly utilizes the
patented invention is not allowed. In practice, then, patent covers much
broader area of activities than copyright. The exact breath of a patent de-
pends on the actual claims (or more exactly their interpretation) in the pat-
ent application.

Patent laws also typically include several exceptions for non-commercial
or research use and prior use. Prior use exception means that an earlier in-
novator who hasn’t applied for a patent can continue the use of the inno-
vation without licensing concerns. However, expanding the commercial
use of the innovation is not possible.

Liability. As with copyright, the liability standard for patent infringe-
ments is strict liability. One key difference however is that since patent
rights apply only to commercial use of the invention, individual non-

*8 “Official” interpretation guidance is given in USPTO’s Examination Guidelines (1996) as
well as in EPO’s Examination Guidelines (2003).

** Article 52 (c) of EPC defines that “schemes, rules and methods for performing mental acts,
playing games or doing business, and programs for computers” are not to be counted as paten-
table inventions “as such”.

5 E.g. Beresford (2000), p. v, and Stallman (1999b).

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 101

commercial infringement may be exempted from liability.”*® Also the
amount of compensation for infringement depends on whether the in-
fringer has acted willfully.

4.4 Technical Protection

Practical enforcement problems of both copyright and patents have
guaranteed a market for different technical self-protection systems. De-
spite many hopes and new initiatives, copy protections haven't offered
any final solution to intellectual property enforcement.

4.4.1 Early Copy Protection Systems

Different technical ways to enforce usage restrictions on software were
developed right after the early corporate software product markets started
to form.” Later, when software mass-markets evolved in the early 1980s,
software producers started to use extensively different copy protection
mechanisms to prevent unauthorized copying.”® Many early copy protec-
tions techniques were based on hardware tricks. For example, the popular
spreadsheet program Lotus 1-2-3 had a following kind of system:

“The program required the user to initial the 123.EXE loader with
owner information before the program would run. However, this
initialization could only be performed on the original system disk. It
turns out that the system disk contains a specially formatted track,
which must be present for the initialization process to proceed (this

%6 While it may sound intriguing with open source, this exception may not be that relevant in
Practice since open source explicitly does not restrict the commercial use of the software.

“ However, for example IBM didn’t ever take into use technical protection systems. See section
2.2.1.

8 Tyler (1986), p. 34, describes the sentiment in the early 1980s as “virtually every major firm
has some form of copy protection, and some observes say that firms who do not protect their
software are bringing piracy upon themselves”. He also mentions interestingly that Apple rep-
resentative, as contrast to many others, had commented that they can’t sell a computer system
“if it looks harsh or threatening”.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 102

track is completely trashed by the install program after the disk is

initialized making it impossible to reverse the process).”**”

The copy protection systems didn’t however solve the problem of copy-
right piracy. Instead, software buyers became annoyed since copy protec-
tions compromised usability.””” For example, when hard disks became
more popular and copy protections effectively prevented software installa-
tion on the hard disk. Copy protections also prevented backup copies.

“So copy-protection removal software was born. Its original intent
was to let legal software owners make legal backup copies of their
software. In a day when some word processor, spreadsheet, and
other software cost US$495 or more it was much too costly to just go
and buy another copy if one or more disks went bad. And many re-
fused to pay software companies up to US$25 PER DISK for re-

placements. They would simply buy a less expensive product.”’!

In the end, none of the software copy protection initiatives, were they
based on hardware or software, proved successful enough to become
standard. The role of copy protections was re-evaluated and many leading
software companies chose not to use them at all.”* As the markets for copy
protection systems dried out well before the 1990s, the software industry
had to start tolerating unauthorized copying to some extent.

4.4.2 Anti-Circumvention Legislation

Legislation once again trailed behind the developments in the market-
place. A 1988 case had explicitly stated that copy protection systems did

* See Tomboy (1998) for a collection of copy protection mechanisms (and easy cracks for them)
used in Lotus 1-2-3 spreadsheet application during the 1980s.

0 Describingly, BYTE magazine readers nominated in 1986 as the software company of the
year all those companies who dropped copy protections. See Pornelle (1987).

7! See Rose (2004) for an introduction to copy-protection removal software.
2 Pornelle (1988) reported that “as it happens, 1987 was the year the bottom fell out of the
copy-protection market. A few publishers out there didn't get the word, but for the most part,
copy protection of business software is history, and even publishers of games are going to an
entirely different scheme.”

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 103

not enjoy any special legal protection in the US.”®> However, as quick as in
1991, EU’s software directive came to add a new rule, which stated that the
circumvention of technical copy protections is illegal.”* United States fol-
lowed in 1998 with the implementation of Digital Millennium Copyright
Act??

Especially the latter legislation was connected with the arrival of
the copy protection mania into the media industry.””® Relabeled as
“digital rights management”, copy protections were implemented to
different media from physical CDs and DVDs to digitally distributed
video and games. Sometimes these media copy protection systems
have also been failures much like the software copy protections of
the 1980s. A good example is the copy-protected music CDs from the
early 2000s, which were in practice easily circumvented by virtually
any computer user. Since those protection systems only made CD lis-
tening more difficult to music buyers, labels had to stop using them.
DVD copy protections have lived longer although by now the sys-
tem can be easily circumvented with generally available software.

4.4.3 Is Technical Protection Effective?

One central question common to all copy protection system is whose
behavior they can exactly control It seems that different user groups have

3 See Vault Corp. v. Quaid Software Ltd. (1988), where the defendant manufactured a copy
protection circumvention software called RAMKEY. The court held that “(1) Quaid did not in-
fringe Vault's exclusive right to reproduce (2) Quaid's advertisement and sale RAMKEY
does not constitute contributory infringement; (3) RAMKEY does not constitute a derivative
work ... and (4) the provision in Vault's license agreement, which prohibits the decompilation
or disassembly of its program, is unenforceable.”

74 It must be noted, that the Software Directive’s circumvention ban had many exceptions. If
the circumvention had any lawful justification — such as back-up copies, research use, or the
development of interoperable software — then the circumvention was obviously allowed.

73 In Europe, the extensive protection of technical copy protection systems for other works but
software arrived with the 2001 Copyright Directive.

¢ Difference between the history copy protection circumvention legislation on software and
media industries also hints of the lobbying power of the respective industries. While the soft-
ware industry has never had unanimous opinions on copy protections, the media industry has
been particularly unified and also successfully furthering their goals in outlawing circumven-
tion.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 104

different capabilities and interests to circumvent the systems.””” Software-
based systems work perhaps against what one could call normal users. But
the power users, who are able to configure their computers and media de-
vices outside manuals, will always be able to find cracks from the Internet.
Legislation that prohibits the use and distribution of such crack programs
has not had any significant effect for their availability. Finally, hardware-
based solutions may raise the bar to crack the system even out of touch
from the power users.”® But so far there have always been professional
crackers who have in fact competed with each other who is the first to cir-
cumvent the latest copy protections systems were they based on hardware
or software.””

Normal user Power user Professional cracker
No technical Good technical Excellent technical
knowledge knowledge knowledge

Any protection system Software-based Can eventually crack
works systems do not work any system

Table 6. User capabilities and technical copy protection systems.

4.4.4 The Promise of Trusted Systems

Despite the unfortunate history, there remain those who believe that
copy protections will come back and prevail one day. One argument is
based on the idea of trusted computing, where every PC in the future would
have a standardized hardware-based security system enabling among oth-
ers copy protection. The argument is currently advanced by Trusted Com-
puting Group (including IBM, HP, Microsoft, SUN, Sony, Intel and AMD)
and strongly opposed by Internet activists campaigning for user rights and

7 The following is further developed from Scheier’s (2001) taxonomy.

78 Although for example power users of game consoles have been able to install additional cir-
cumventing hardware circuits to their systems.

#9 Rehn (2001) presents an insightful economic analysis of the cracker profession. The “scene”
consists of various groups competing on who first cracks and publishes the recipe for software-
based copy protections.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 105

privacy.®® Another argument goes that in the future the increasing fea-
tures of handhelds devices and game consoles with embedded software
may significantly lower the market share of general purpose PCs.

A concern for open source developers is that if any of the trusted com-
puting proposals would eventually become a standard, it would mean that
users do not anymore have unlimited access to their system. It may be
possible to build copy protection systems, which would be effective in
normal and power user groups. Further, such a trusted system may re-
quire every software product to be authenticated by third parties who may
not prefer open source.”

4.5 Are Intellectual Property Laws Out of Balance?

One can argue that the continuous expansion of different overlapping
intellectual property laws over software has implied that the law is now
out of balance. But is it really so? Can open source balance the expansion
trend?

4.5.1 Balancing Principle

Conflicting interests. One of the fundamental principles of intellectual
property laws is the aim at balance between the interests of rights holders
and the general public. On the one hand, absolute monopoly power with
unlimited exclusive rights would arguably unnecessarily restrict access to
culture and stifle innovation. On the other hand the existence of limited
exclusive rights can be justified by utilitarian (incentive theory) and moral-
philosophical (man’s right to his personal creation) principles.

Public domain versus regulation. From a practical perspective, intellec-
tual property protection can be thought to be arbitrary; in the case there
were no copyright or patent laws, any information or knowledge would be
free for anyone to replicate, build upon, and use. Also the very nature of

*0 See e.g. Anderson (2003) for a critical overview and arguments against trusted computing
initiatives.

#1 See Stallman’s (2002) essay “Can you trust your computer?” where he argues that treacherous
computing is a more adequate term to describe trusted computing initiatives.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 106

software as fully replicable digital information makes it impossible to con-
trol unless there is explicit legal regulation.

Therefore, any aspects or part of software products where the intellec-
tual property regulation does not reach remain effectively free to use for
any further purpose. Indeed, neither copyright nor patent or any other in-
tellectual property right fully covers all aspects of software. For example
copyright does not apply to those parts of source code with only one pos-
sible implementation, it does not cover functional aspects of a running
software product and, in addition, copyright itself includes specific excep-
tions for particular uses of works otherwise under copyright. Patents are
limited only to those parts of software, which implement an innovation —
typically an algorithm in source code or other clearly separable subpart of
the whole software product. Also patents have exceptions and so on.

4.5.2 Expansion Trend

Implicit balance. Historically, intellectual property laws have lagged
behind technological development. So has it been with software too. As
late as in the 1970s legal issues were rarely taken into account at software
development even within the largest companies.”®* In the early corporate
markets, when each user signed a separate contract and the possibilities
for users to copy software and benefit from doing so were limited, contrac-
tually enforced trade secret law turned out to be the preferred legal form
(if anything was needed) to protect software secrets. At that time it wasn’t
yet clear whether copyright and patents would apply to software at all.
Nevertheless, it is important to note that the industry quite effectively
achieved the intent of the intellectual property to create new works and inno-
vations for the benefit of both the society and individual creators and in-
novators — without any explicit legal regulation.

Explicit regulation. Since the early 1980s, copyright law was finally ex-
plicitly revised to cover software products in detail. The economically very
valuable software mass markets of the 1980s called for different means of

2 National Research Council (1991), p. 5.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 107

legal protection and the book and record publishing model based on copy-
right proved useful. Patents also returned into the spotlight in the 1990s
when the limits of copyright became obvious. Now most of the big soft-
ware companies have adopted a pro-patent policy and started to build
portfolios of their own.

Table 7 below summarizes different protection methods used in soft-
ware products during the industry history.

Era Users Computers Software type Software protection
1950s Corporations Custom made Corporate projects Trade secrets
-1960s First products Rare patents
Nothing
1970s Corporations Mainframes Corporate products Trade secrets
Universities First PCs Internet infra Nothing
Hobbyists Hobbyist projects
1980s Consumers PCs PC applications Copyright
Corporations Mainframes Corporate Products Technical protection
Universities Internet infra Some patents
1990s Whole society All electronic All kind for all Copyright
devices users More patents

Technical protection

Table 7. Different forms of legal protection of software in the industry history.

Some of the major copyright and patent policy events during the indus-
try history are summarized in the timeline below:

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 108

technology copyright open source patents
A
Patent directive (2005?)
SCO v. IBM (2003)
2000 T~ }
Internet environment Open Source Initiative (1998) IBM (1998)
Open source developers
Linux 1 (1994)
CA V. Altai (1992) AT&T v. UC Berkeley (1992) " Re Alappat (1994)
1990 +— Windows 3 (1990) Software copyright directive (1991)
GNU GPL (1989)
VICOM (1986)
Mass-market software products
PD and shareware authors GNU Manifesto (1983)
1 DOS (1981) Diamond v. Diehr (1981)
1980
CONTU recommends copyright (1978)
CP/M (1976)
Corporate software products
Early hackers European Patent Convention (1973)
1 uNix(1971)
1970 IBM unbundles (1969)
Software patented (1968)
IBM S/360 (1965)
Software copyright registered (1964)
1960

Figure 11. Evolution of software copyright and patents in the industry history.

The legal development of software copyright and patents has been far
from self-evident. The industry has witnessed difficult policy battles in
almost all major legal developments from the interoperability exception in
copyright to the recent debate about the applicability and coverage of
software patents. If anything, it can be argued that the copyright basis of
software is rather settled and balanced. One must admit, though, that pat-
ents are currently heatedly debated. While the role of patents is increasing
the future remains still uncertain. Further, most of the alternative propos-
als to copyright and patents from sui generis protection to technical copy
protection systems have not realized the hopes many have had.

Is the balance now endangered? Some commentators have argued that
the expansion trend has endangered the balance of interests behind intel-

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 109

lectual property laws.”® The scope of different intellectual property rights
has indeed continuously expanded to cover new valuable aspects of soft-
ware thus strengthening the relative power of those who can acquire and
use the rights. Any potential problems are further multiplied by the com-
bined effect of different rights. Software is today covered not only by
copyright and patents, but also trade secrets, technical protection, con-
tracts and trademarks. The unfortunate outcome of the protection trend is
that copyright and patents, among other rights, may in practice overlap.”

These overlaps can further contribute to the fragmentation problem and
cause inefficient anti-commons lock-ups. A user needs may need to get a
license from multiple right holders, not just one of them. Obviously licens-
ing becomes more difficult and costly. Overlaps are also a major risk in
open source licensing, as we will discuss later.*® A user may longer trust
that licensed software covers all possible intellectual property rights just
because it is very well possible that some unknown third party has for ex-
ample a patent covering essential functionality.

4.5.3 Open Source as a Balancing Force?

Open source entered the legal policy development at the turn of the mil-
lennium. In theory, at least, open source offers noticeable balance to the ef-
fects of intellectual property rights. Open source strengthens the role of
individual authors and software users over the traditional intellectual
property right owner and proprietary licensor. This applies, however, only
to the ways in which intellectual property rights are being used in practice.

Open source policy advocates have realized that the formal legal institu-
tions are much harder to influence upon than informal social and ethical
norms. The first major battle where advocates have had real influence is
the software patents controversy in Europe where it is far from certain that

3 Of most notable critics, e.g. Lessig (2001) claims that “Rather than ‘wait and see’, the law has
become the willing tool of those who would protect what they have against the innovation the
net could promise”. Drahos and Braithwaite (2002) further argue that the expansion trend in
both patents and copyrights is leading the world towards “information feudalism” where mul-
tinationals exclusively own the culture and innovation.

** As noted, copyright usually always covers the whole program and a patent may then cover
certain patented functionality.

5 See section 6.1.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 110

their opposing arguments would prevail®® Open source has brought
again notable balance to the patenting discussion providing a credible
counterargument to those who propose extensive US-style patentability.
There is hope that also the law on software patents ultimately becomes set-
tled and balanced as software copyright already largely is.

At a more general and global intellectual property policy level, World
Intellectual Property Organisation (WIPO) is in the key role. It has been
criticized of pushing in its agenda an a priori principle of “more protection
is always better” without much economic analysis or reality checks.” In
fact, WIPO was about to set up a meeting to discuss open source and its
impact on intellectual property already in 2003. However, largely due to
pressure from BSA and USPTO the meeting was cancelled. An USPTO'’s
official made an uneducated but revealing comment in public noting
that:**®

“To hold a meeting which has as its purpose to disclaim or waive
such rights seems to us to be contrary to the goals of WIPO”

In 2004 consumer and civil society groups, campaigning for open source
among others, were finally able to push alternative perspectives in the
WIPO agenda from a new direction: allying with the interests of develop-
ing countries. Their proposal, which was accepted by WIPO for further ex-
amination, essentially concluded that:**

“A vision that promotes the absolute benefits of intellectual prop-
erty protection without acknowledging public policy concerns un-
dermines the very credibility of the IP system.”

6 Europe’s software patent debate is discussed in more detail in section 6.2.

7 For a book-length argument and evidence from different fields of intellectual property see
Braithwaite and Drahos (2002).

288 Krim (2003).

* WIPO Development Agenda Proposal (2004). It must be noted, though, that any agreed
WIPO documents so far remain at the level of abstract diplomatic rhetoric without any direct
reference to for example open source.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 111

4.6 Concluding Remarks: An Open Perspective on Intellectual
Property

As we saw, intellectual property laws have evolved to cover software
products in finest details. Today, copyright, patents and technical protec-
tion systems are applied to govern the use of software products. But are
these laws really necessary for licensing? This is a crucial but yet unan-
swered question. The fact is that software has been licensed even before
there were any software copyright or patents in existence. In practice, then,
intellectual property enforcement has not been a fatal problem for soft-
ware licensing business.

One must be careful not to mix copyright and patents. One can argue
that the function of patents in the software industry has not been to enable
licensing in the first place. Patents give the right holders power to exclude
others from using software. Copyright, instead, does not in practice give to
its holder much power to exclude others since copyright covers only code
and the code can be always rewritten to cover the same desired functional-
ity. Nevertheless, copyright enables some control over source code reuse.
Some open source licensing models essentially build on the possibility to
control and enforce recycling.

The difference between the power to exclude and the option to control
source code recycling is notable. The first, based on patents, applies to
every software product even if they are independent creations. In this
sense, patents are usually considered to go against the principles of open
source since they can stop the creation of new independent works. The lat-
ter notion of controlled recycling, however, fits with open source princi-
ples. One may first require source code publication and then apply it to the
direct derivatives of the original code. In this way, copyright enforces the
principles of open source.

In fact, open source is developing copyright towards the original idea of
droit d’auteur®® The concept of a copy is dismissed, since in open source
rhetoric the problem of copying belongs to the 16" century. Authors’
rights, as they were originally developed in the 18" century France, went

0 See also Metzger and Jaeger (2002), pp. 94-95.

INTELLECTUAL PROPERTY AND ITS DISCONTENTS e 112

against the rights of the printing press owners who controlled the reprint-
ing of copies. The commercial printing presses of the 20th century — soft-
ware publishers, record labels and the like — reinvented the concept of
copyright and the personal rights of the authors were pushed to the foot-
notes. One way to look at open source is to see it promoting the original
ideals of authors’ inalienable rights to control the integrity and paternity of
their personal creations. At the same time open source also aims to un-
dermine the role of patents. Thus, the impact of open source on intellectual
property is not straightforward: while some aspects are clearly attacked,
others are revitalized.

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 113

5 OPEN SOURCE LICENSES AS ALTERNATIVE GOVERNANCE
MECHANISMS

This chapter discusses how different open source licenses build on intel-
lectual property laws and reflect the lessons from the economic theory. Li-
censes are categorized and their functionality further analyzed. Open in-
terpretation issues as well as implications to software business are identi-
fied. Finally, the chapter ends with a discussion on open content, on how
the techniques of open source licenses have been adopted for use in other
works of art than computer software.

5.1 Bargaining in the Shadow of Intellectual Property Law

5.1.1 What Makes a License Open Source?

Open Source Initiative formally accepts licenses that fulfill Open Source
Definition as open source licenses. The definition requires essentially that
a qualified license should allow:*"!

- Free use meaning that any discriminating restrictions on e.g. com-
mercial use, the number of users or hardware are not allowed?”

- Copying and distribution without any royalties meaning that licensing
fees are not a viable business model*”®

- Modification without any royalties.”* However, it is possible to include
other conditions on modification such as the requirement to publish
all modifications

- Open and easily available source code (but not necessarily free of
charge), which is a practical requirement to do any modifications.””
Consequently, secrecy is not a possible mean to control development
and innovation.

#! For a somewhat similar summary of OSD, see Rosen (2004), pp. 9-11.
22 GSee OSD, sections 5 and 6.

28.0SD, section 1.

24 0SD, section 3.

25 0SD, section 2.

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 114

These are essentially requirements based on the substance of copyright
law. The basic logic is that the exclusive rights are reversed into non-
exclusive. All major components of copyright — copying, distribution and
modification — must be explicitly allowed in open source licenses. This
contradicts strikingly the traditional thinking of intellectual property
rights and licensing in the software industry.

It must be stressed that open source code is by no accounts anti-
copyright. Licensing software with an open source license does not mean
the software would be donated to the public domain. Open source soft-
ware still has owners as long as copyright lasts. In fact, some open source
licenses pose surprisingly strict obligations on the use of the modification
right as will be discussed in this chapter. In addition, the moral compo-
nents of copyright (mainly author attribution) are explicitly enforced.

5.1.2 What Is Not Required?

Regarding the content of typical software licenses, Open Source Defini-
tion is not that extensive. There are no requirements for many basic issues
in other intellectual property laws than copyright. There are no require-
ments on license compatibility, warranties or formalities either.

Moral rights. Open Source Definition is silent on both attribution and
reputation. No doubt, the copyright law in most countries does require for
example that the author’s name is not removed from a derivative work.
But as was noted in the previous chapter, moral rights have not been codi-
fied in the US copyright law. Luckily, in practice every open source license
requires attribution. As was argued at the end of the previous chapter,
open source can be understood in fact to work largely based on the ideas
of moral rights in copyright.**

Patent and other intellectual property licenses. As noted, Open Source
Definition places essentially requirements on copyright but not on other
intellectual property rights. The definition is silent on patents. Obviously,

2% See section 4.4.

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 115

the requirements on royalty-free use, copying, distribution and modifica-
tion imply that there can’t be any patent licenses that require royalty pay-
ments. The same goes for trademarks. However, it seems to allow royalty
collection from patents and trademarks targeted to others but the particu-
lar open source users of the software. For example, a licensor may license
his patent without royalty to the open source users, but at the same time,
collect royalties from the users of another proprietary software implement-
ing the same patented invention.

Controlled rights ownership. Open source licenses do not require con-
trolled rights ownership but allow distributed and fragmented rights. This
also implies certain caveats as was discussed in the previous chapter.””’
Thus, for example Free Software Foundation suggests authors who use
their licenses to transfer the copyright to the foundation in the case there is
need of license enforcement.

Warranties. The definition does not require anything on warranties ei-
ther. This is actually rational, since the sales of both technical (error) and
legal (indemnification) warranties can be an additional income source for
commercial open source developers. Requiring a certain kind of minimal
warranty would weaken the possibility of this business model and also
frighten developers who can’t accept any kind of liability for what they do.
The lack of any warranties also highlights the possibility of liability cave-
ats.

Compatibility. Open Source Definition sets only criteria to certify soft-
ware licenses. It is not a standards specification, which would aim at
interoperability and thus the concept of open source must be kept separate
from open standards. In practice, sometimes open source code can’t be
combined with other open source code because the licenses of these two
source codes are incompatible with each other. Admittedly, incompatibili-
ties with licenses may result in less network effects and slow down inno-
vation.

27 See section 4.2.5.

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 116

Formalities. Finally, the definition does not require that the licenses
should be legally binding or enforceable. The validity of any provision in
an open source license depends on its legal enforceability. The question of
validity is especially important in countries other than the United States
since most open source licenses have been written and legally analyzed
from US perspective. Legal studies on the subject seem to conclude, how-
ever, that open source licenses should be enforceable in practice all over
the world.*®

5.1.3 Enforcing an Open Source Bargain

Legal theory. The definition does not say either whether the license
should be based on solely copyright law or be written as a contract. There
has been much debate on the benefits and drawbacks of bare copyright li-
censes versus contracts — the outcome perhaps being that contracts may
need explicit acceptance from the part of the licensee while resting legally
on a sounder basis.””

It has been argued for as long as software licenses are used that such li-
cense agreements may not be enforceable because the user may not con-
sider and explicitly accept the license. However, many commentators of
open source licenses argue that the licenses become indeed enforceable
when the user distributes the work further — distribution is restricted by
copyright until the license is accepted.*” Thus, the logic of the interpreta-
tion is that open source licenses are (mass market) contracts, which copy-
right law makes enforceable: by using any of the rights granted in copy-
right law the user must accept the license as a whole.

Para-legal practice. While it is possible to construct arguments for a
strong legal enforceability of open source licenses, it seems that actual en-
forcement is largely para-legal. According to O"Mahony’s empirical study,
most community projects seek licenses compliance through informal

*% See e.g. St. Laurent (2004), Guadamuz (2004), Malcolm (2003) and Metzger and Jaeger (2002).
* Legal doctrines on binding contract and copyright license may differ significantly. See e.g.
Rosen (2004). On arguments why contracts are better see Malcolm (2003).

% See e.g. Moglen (2001a) and Guadamuz (2004), p. 334.

OPEN SOURCE LICENSES AS ALTERNATIVE ... « 117

means such as pressuring online discussions, emails and negative public-
ity. They try not to even threat with legal action or claim damages. Justifi-
cation for enforcement comes from the collective prevailing opinion of the
community.*”!

One must be careful not to overemphasize the role of para-legal en-
forcement. While it may be quick and efficient and cover most license
compliance issues among a close-knit community of developers, it still has
a limited reach. If an accused license violator so wishes, he may finally
seek for the opinion of the court of law. And then what matters is the legal

reading of the licenses on the basis of intellectual property laws in force.

5.1.4 Licenses Categorized

Open Source Initiative has accepted tens of different software licenses as
open source. While the number of approved licenses has been continu-
ously growing, there haven't been much new inventions in the license
functionality. Many of the latest licenses are project or company specific
variants or combinations of already accepted licenses.

There are different ways to classify open source licenses. Metzger and
Jaeger have used six different classes in their detailed legal analysis.*” In
this book, we use two classification systems: functional and historical.
Based on functionality, we separate three different categories: licenses with
(1) strong and (2) standard reciprocity obligations and (3) permissive li-
censes. Based on historical origin, we separate four categories: (1) GNU, (2)
academic, (3) community and (4) corporate licenses. Let’s define each cate-
gory in turn.

Functional differences. From functional perspective open source li-
censes can be classified based on how each license treats the modification
right of source code (derivative works). First, we define standard and strong
reciprocity obligation as follows:*”

¥'See O'Mahony (2003) who calls the informal mechanism as “the court of public opinion”.

2 See Metzger and Jaeger (2002).

3% Term “reciprocity” is derived from Rosen (2004). In economic literature, for example Lerner
and Tirole (2005) use terms restrictive (standard) and highly restrictive (strong) licenses. It is

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 118

- Standard reciprocity obligation means that the distribution terms of the
source code must be maintained. Such licenses are commonly called
as copyleft. If the source code is developed further, the licenses terms
can’t be changed or the source code closed. However, if the source
code is combined with another source code to create a new work,
then standard reciprocity obligation does not apply to the combined
work.

- Strong reciprocity obligation extends the standard reciprocity obliga-
tion: even adaptations and derivative works must keep the license
terms intact. Such licenses may be described — depending on the

value judgment - either strong copyleft or causing a “viral effect” .

Some licenses with strong reciprocity obligation have been extended
further with a network use obligation. It is usually thought that licenses with
standard and strong reciprocity obligations become applicable after the
software is distributed and traditionally a distribution is interpreted as a
downloadable or fixed software package. Network obligation adds that
also the plain use of such software over a network should be interpreted as
distribution. Hence, reciprocal licenses with an additional network use ob-
ligation can be described even “stronger” than licenses with the strong re-
ciprocity obligation.

In addition to reciprocal licenses, another major functional category is
permissive licenses. These allow free distribution, copying and modifying.
Even change of license terms of adaptations of the original source code is
allowed and therefore there are no reciprocal requirements in permissive
licenses. Permissive licenses have no network usage clause.

To sum up the above, we can illustrate the functional differences be-
tween open source licenses in the following figure:

also rather common - also in academic literature — to call reciprocal licenses as simply
“copyleft” licenses following the Free Software Foundation’s policy objectives.

¥ On the one hand, open source critics may compare the situation to viral infection meaning
that even if a new work is only partially based on source code under strong reciprocity it may
not change the license terms; with standard reciprocity that would be allowed. On the other
hand, Free Software Foundation uses term copyleft, which arguably signals their ideological
approach to copyright.

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 119

Strongly reciprocal Standard reciprocal Permissive
component component component

Derivative Combined Relicensing possible

work work . Proprietary software possible
i Patent royalties possible

Figure 12. Functional differences regarding combination and modification between open source
licenses.

A software component with a strong reciprocity obligation will maintain
its license terms even when used as a part of a combined work (such as
embedded software). Under standard reciprocity obligation, combined
software can be re-licensed, i.e. the licensee is not tied to license terms.
However, if the component itself is further developed, all derivative works
must remain under the same license. Components under permissive li-
censes do not have any of these licensing restrictions. They can be com-
bined in proprietary software and further developed under any condi-
tions. — Network use obligation is not illustrated in this picture since it ad-
dresses the distribution and not combination or modification of the soft-
ware.

Different historical origins. Many open source licenses carry a history
load. From this perspective we can identify four major license categories:
GNU, academic, community and corporate licenses. The differences here
do not deal with the license functionality but are merely related to the
readability of the licenses and the extent each license takes into account
other rights and obligations in addition to the copyright to source code.

OPEN SOURCE LICENSES AS ALTERNATIVE ... * 120

These more practical factors may be decisive in the license choice as we
show later in this chapter.

The first category includes the so-called GNU licenses. Introduced by
Richard Stallman and Free Software Foundation in the 1980s, these li-
censes carry a strong ideological message. The language of GNU licenses is
written as to any “like minded” software developer and the licenses are al-
ready quite familiar among developers. Not surprisingly, as open source
has become more common in larger organizations, lawyers have become
hesitant to GNU licenses for their vague language and uncertain implica-
tions. Still, GNU licenses are being used for diverse goals as community-
based Linux and corporate-oriented MySQL show as extreme examples.
Unfortunately GNU licenses have also incompatibility problems with
many other open source licenses — sometimes based solely on Stallman’s
uncompromising ideology. As would be expected, the licenses go explic-
itly against software patents: those bind by GNU licenses should license to
anyone for free any patents that apply to GNU licensed software.

In the second category we have academic or research licenses. These li-
censes originate from large-scale publicly funded Internet infrastructure
projects at US universities starting from UC Berkeley. For example major
Internet-related components such as the domain naming system (BIND),
internet-protocol (TCP/IP) and email processing software (Sendmail) have
become de facto standards under permissive academic licenses. Academic
licenses are short and rather clear in language although they do not take
into account that many rights and obligations either that corporate coun-
sels might find comfortable to live with. However, one could think an aca-
demic license is more often read than e.g. a GNU license and probably also
understood by others than developers. Academic licenses do not typically
take any stand on software patents or other intellectual property rights
than copyright. They are mostly compatible with other open source li-
censes.

Third category consists of community licenses, which typically originate
from some major free software project. They have gained popularity along
with the Internet and free Unix implementations. Most popular is Artistic
License originally distributed with Perl programming language. It is very

OPEN SOURCE LICENSES AS ALTERNATIVE ... « 121

hacker-oriented with ambiguous terminology and many open interpreta-
tion issues. While it may fit perfectly the hacker culture, no corporate law-
yer would perhaps ever suggest using such risky and uncertain terminol-
ogy. Another popular is Apache license originally from the web server and
related tools by Apache Software Foundation. Apache license is legally
considerably more rigid than Artistic License taking also into account pat-
ents and trademarks. Finally, one could also include public domain into
the community category though it can also form a separate group of its
own.

When open source software became more popular in large IT enter-
prises in the late 1990s, many of them started to introduce licenses of their
own. First major corporate license was introduced by Netscape in 1998 when
they opened the source code of their popular web browser. Other large IT
companies followed including IBM (Common Public License), Apple (Ap-
ple Public Source License) and SUN (Sun Public License and Sun Industry
Standards Source License). Also Open Source Initiative itself introduced
more corporate-minded open source licenses written in lawyer language
(Open Software License and Academic Free License). Corporate licenses
are typically very detailed addressing issues such as patent and trademark
licensing, copyright to code contributions and many formal issues not in-
cluded in other open source licenses. There are differences though; for ex-
ample Sleepycat License likens other “pure” open source licenses in its
writing style and has historical origins going beyond the Open Source Ini-
tiative.

5.1.5 Popularity of Open Source Licenses

Table 8 below features the most popular licenses at Sourceforge.net (as
of late 2004), which hosts tens of thousands of free and open source pro-
jects:

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 122

License Functionality Origin Popularity
GNU GPL Strong reciprocity GNU 66.5 %
GNU LGPL Standard reciprocity GNU 10.6 %
BSD Permissive Academic 6.9 %
Public domain Permissive Community 2.7 %
Artistic Permissive Community 2.0%
Apache Permissive Community 1.9 %
MIT Permissive Academic 1.7 %
Mozilla Standard reciprocity ~ Corporate 1.5%
Common Public License Strong reciprocity ~ Corporate 0.6 %
Zlib Permissive Community 0.5 %
QPL Strong reciprocity ~ Corporate 0.4 %
Open Software License Strong reciprocity Community 0.4 %
Python License Permissive Community 0.4 %
Academic Free License Permissive Community 0.3%

Table 8. Most used open source licenses on projects hosted at Sourceforge.’”

Of all projects at Sourceforge that disclose license information, an addi-
tional 1.7 % has a proprietary license. These percentages only reflect the
popularity of the licenses among new and non-mature projects. Many
large and mature open source projects are coordinated through dedicated
development forums. Also, license popularity only indicates their relative
importance. Despite GNU licenses seem to be overwhelmingly popular,
many important and central open source projects use different licenses as
was noted above.

There are some empirical studies on who exactly use which kind of li-
censes. Lerner and Tirole found, based on an analysis of Sourceforge, that
open source projects targeted towards developers and those projects,
which produce basic Internet infrastructure software have usually permis-
sive licenses. To compare, Sourceforge projects aimed at end-users usually
have more restrictive licenses with reciprocity obligations.’® Further,
Fershtman and Gandal observed interestingly that Sourceforge projects
with permissive licenses generate more output per developer than projects

with reciprocal licenses.*”

%% In the table, particular licenses include all versions of it.

3% See Lerner and Tirole (2005).

%7 See Fershtman and Gandal (2004). One reason can be that projects with reciprocal licenses
have plenty of authors who only want their names listed. Instead, projects with permissive li-

OPEN SOURCE LICENSES AS ALTERNATIVE ... e 123

5.1.6 A Framework for License Analysis

In what follows, some of the most relevant open source licenses in each
category are introduced and analyzed from legal perspective. As the li-
censes change over time, the analysis does not aim at comprehensive and
pedantic legal interpretation of the whole license texts. Rather, the aim is
to identify how the main functionality has been implemented in the license
text and then interpreted in practice. With each license the following
things will be discussed in detail:

1. Derivative works: what kind of reciprocity obligation does the license
have, if any?

2. Patents: how does the license treat software patents?

3. Compatibility: is the license compatible with other licenses?

Further, we discuss the issue of intellectual property warranty (indemnifi-
cation) with those licenses, which have or have had such feature. We are
also generally interested in how particular licenses have evolved. It can be
assumed that some of the license features are more settled while others
may need revision because of e.g. interpretation or compatibility issues.
The general approach of the licenses towards moral rights is also shortly
mentioned.

Before the analysis, it must be once again stressed that most open source
licenses have not been tested in the court. While the licenses may well be
enforceable according to the letter of law, court disputes on open source
licenses have been extremely rare.*® Comparing different licensing terms
from open source to proprietary ones, journalist Andrew Leonard has
noted that “licenses are only as good as the faith that people put into
them.”?” Therefore, in the following, we refer in addition to license text

censes attract mainly those who really want to participate and learn from the development
without opportunistic goals much like in ideal science.

% Some of the rare cases include Progress Software Corp. v. MySQL AB (2002) and a German
court decision by Landgericht Miinchen I on 19th May 2004. In both cases GNU GPL was
treated as valid.

¥ See Leonard (2000b), comparing the ethics of open source licenses to those used by the enter-
tainment industry.

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 124

and intellectual property laws to informal community norms, online dis-
cussions, and out-of-the-court disputes, which describe how the licenses
are applied and interpreted in the real life.

5.2 GNU GPL and Strong Reciprocity

5.2.1 Derivative Works in Copyright Law

Many open source licenses include obligations to source code recycling
based on the concept of derivative works in copyright law. But what ex-
actly constitutes a derivative work of a computer program in the US and
EU copyright law? The interpretation is not straightforward. First of all,
“derivative works” is a strictly US legal concept. 17 USC 106 (2) defines it
as:

“derivative work” is a work based upon one or more preexisting
works, such as a translation, musical arrangement, dramatization,
fictionalization, motion picture version, sound recording, art repro-
duction, abridgment, condensation, or any other form in which a
work may be recast, transformed, or adapted. A work consisting of
editorial revisions, annotations, elaborations, or other modifications,
which, as a whole, represent an original work of authorship, is a “de-
rivative work”.

In the United States case law, courts have determined that to be deriva-
tive, a computer program must be substantially similar’'® and in some form
include a portion of the copyrighted work.’"' To compare, in European laws
there is no exactly corresponding wording to the US derivative works.
Consider article 2 of the directive on the legal protection of computer pro-
grams, which states as a prohibited act:

0 jtchfield v. Spielberg (1984). See also Lemley et al (2000), p. 208-209.

It was held in United States v. Manzer (1995) that 70% similarity in the code base was suffi-
cient to make the other work derivative. See also Lemley et al. (2000), p. 208, referring to case
Vault Corp. v. Quaid Software Ltd. (1988) where the quality of the copying is discussed.

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 125

“(b) the translation, adaptation, arrangement and any other altera-
tion of a computer program and the reproduction of the results
thereof, without prejudice to the rights of the person who alters the
program”

Interpreting the wordings, one could say that the European definition of
derivative works is much broader and stricter: any alteration of existing
works creates a “derivative work” .>*? Instead, in the United States, the new
work must be based on the underlying work. In the context of computer
programs, taking only a short passage of someone’s copyrighted source
code into a combined program could be considered as an “alteration of the
work” while the new program might not be considered as being “based
on” the recycled code.

Any copyright license must be interpreted in each jurisdiction under the
applicable laws in force. As discussed, the US and EU copyright law differ
in their respective formal definition of derivative works. Many open
source licenses have been written with explicit reference to the US style
wording but we may argue that the same wording covers also European
definition although the concept of derivative works may have wider appli-
cation in the EU than in the US.

Source code interpretation. Suppose now that both the European and
US systems recognize the existence of derivative works. So how far does
the control of the original author reach? Let’s start assuming there are two
source codes and it is claimed that one source code is a derivative work of
the other. Lawyers have developed two theories applicable with the source
code analysis of derivative works: the idea-expression dichotomy and the
abstraction-filtration-comparison method.

The idea-expression dichotomy says that copyright applies only to ex-
pressions and not to ideas. Therefore any idea behind the work, say a
mathematical algorithm or an idea to develop a new kind of word process-

*2 In addition, it can be argued that the author’s moral right of reputation extends the scope of
the modifying right in Europe. See Metzger (2004). One can also state that modification does
not threaten the reputation of the creator of an industrial product as much as the creator of a fine
art. See Dietz (1994), p. 184.

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 126

ing software is not under copyright. In other words, copyright does not
limit any subsequent author from developing a new operating system or
compression algorithm. Existing programs can be studied and analyzed
for the basis of new original works and only the literal copying of source
or object code is restricted.

Abstraction-filtration-comparison method has been developed in the US
case Computer Associates International v. Altai*" Ravicher has found evi-
dence this method to be nowadays the dominant way of interpreting de-
rivative works of computer programs in the US district courts.”™* The idea
here is in short that the similarity between two source codes must be made
by first abstracting the structure and functions in the suspected source
codes, then filtrating inessential parts (non-copyrighted, public domain
etc.) out and finally comparing the result. Comparison is not based on
idea-expression dichotomy but to more detailed contextual analysis of
source code structure, variable names etc. The method is illustrated in the
figure 13 below.

e Non-essential

e Abstracted. ...

Filtered «— Original

\

Comparison

~a Public domain

Figure 13. Abstraction-filtration-comparison method.

Abstraction essentially results in a filtered version of the alleged deriva-
tive, which is then compared to the original. The case CA v. Altai relied
heavily on the expert witness of computer science professor Randall Davis
whose view was that a computer program consists of both text and behav-

13 Computer Associates International v. Altai (1992).
314 Ravicher (2002).

OPEN SOURCE LICENSES AS ALTERNATIVE ... « 127

ior.>”® According to this view, the source and object code are copyrightable
text while the actual operation of the program is more like behavior.
Therefore for example interfaces and other behavioral functionality could
not be regarded as text nor are they copyrightable.

Component based interpretation. Let’s analyze the problem further in
the terms of component based view of computer programs. In practice, the
component based view may be more usable in open source development,
which favors programming paradigms that rely on maximal source code
reuse. Perhaps the most common problems occur when third party open
source components are used. Figure 14 below illustrates the issue:

Runtime component

il

Software Product

Embedded component

Library component

Figure 14. A simplified component-based view of a computer program.

Assume a developer has a software product where he uses third party
source code distributed in a component. The question is if the resulting
work combining the main program and the component is considered as a
derivative work of the component and hence under partial control of the
third party copyright owner. Let’s separate the question further:

5 Later Davis published an article on the issue coauthored with law professors. See Samuelson
et al (1994).

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 128

- The source codes of the main program and the component have been
mixed (an internal or embedded component). This kind of internal
component tailored “inside” the whole work creates most clearly a
derivative work of the combined whole.

- The product uses component’s functionality (e.g. adds a new run-
time-interface on the top of it). Since copyright does not cover use or
interfaces, such external unmodified runtime components operating
only through interface specifications would clearly not be deriva-
tives of the product.

- Component has been linked to or linked from (e.g. an external li-
brary or device driver). This is the most vague case. Consider a soft-
ware product that links to library routines. Does it become a deriva-
tive of the library? Maybe it doesn’t; many library routines cover just
standard functionality to help exactly in the “routine” tasks. But
what if these routines cover essential and original functionality of the
software and no other routines could be used with it? Further, con-
sider a component according to a client-server setting where the
component acts as a server to the client software product (compo-
nent is linked from). Perhaps the software product would not be a
derivative of the server component if it only uses the server’s serv-
ices. But if the product depends heavily on the server’s functionality
and does not run separately in any other setup without it, the situa-
tion is more dubious: if one wants to use the product, then also the
component must be copied and distributed.

Communications based interpretation. The two interpretation criteria
above are both based on the conventional wisdom of the contents of copy-
right law. While they may satisfy lawyers and project managers, more
technical people may still continue to ask what really constitutes a deriva-
tive program between two seemingly separate program components. Free
Software Foundation has suggested an interpretation based on more tech-
nical criteria and the mechanisms and semantics of communication be-

tween the components:

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 129

“What constitutes combining two parts into one program? [...] We
believe that a proper criterion depends both on the mechanism of
communication (exec, pipes, rpc, function calls within a shared ad-
dress space, etc.) and the semantics of the communication (what
kinds of information are interchanged) [...] So when they are used
for communication, the modules normally are separate programs.
But if the semantics of the communication are intimate enough, ex-
changing complex internal data structures, that too could be a basis
to consider the two parts as combined into a larger program.”

This interpretation suggestion can be illustrated in the following figure:

Memory 1 Memory 2

Shared space Separate | «—— |Separate

Loading
\/ Communication

between modules

Module 1

Module 2

Storage media

Figure 15. Derivative works and loadable modules.

The question is whether modules are derivative of one another when
they are loaded from storage media to the computer’s memory. Basically
in the case of shared address space the answer would be yes, and in the
case of separate address space the answer would depend on the communi-
cations. Interestingly, Free Software Foundation takes a viewpoint of soft-
ware as speech and communication. If one part of the program speaks
with the other part with “physical contact”, there could be a derivative
work in place. From the perspective of copyright law, this interpretation is,
however, questionable since copyright does not cover functionality but lit-
eral code.

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 130

It is not easy to compare the different criteria to analyze when two parts
should be interpreted as creating one whole. Each of the criteria discussed
here may apply better than others in different situations. There are also
some clear limitations to the above criteria. In networked programming
one can think of situations, where third party components have been
mixed with other parts creating a “derivative work” with any of the crite-
ria mentioned. However, the whole work is not under derivative work
concept since it is only run and accessed through the Internet but not dis-
tributed or copied as a software package. This is common when a program is
based on e.g. web services or other online components.

5.2.2 Derivative Works and GPL

Background. Perhaps the most relevant functional feature of GPL is the
way it controls the further distribution of derivative works. In short, GPL
requires that no one can change the license terms of derivative or modified
works — otherwise redistribution is not allowed. The connection between
GPL and derivative works is stated in the term 2b) of the license:

“You may modify your copy or copies of the Program or any por-
tion of it, thus forming a work based on the Program, and copy and
distribute such modifications ... provided that ... :

2 b) You must cause any work that you distribute or publish, that
in whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.”

This part of GNU GPL has been used for numerous political debates. As
open source was breaking through to mainstream in the software industry,
most notably Microsoft argued that because of GPL 2b) any software dis-

OPEN SOURCE LICENSES AS ALTERNATIVE ... « 131

tributed with it would seriously harm the software ecosystem. In 2001, Mi-
crosoft CEO Steve Ballmer famously claimed:*"°

“The way the license is written, if you use any open-source soft-
ware, you have to make the rest of your software open source...
[GPL’d software] is a cancer that attaches itself in an intellectual
property sense to everything it touches” (italics added)

Since then, Microsoft has somewhat mitigated their position. Open
source supporters, and the software industry now more generally, argue
that the scope of the reciprocity obligation in GPL is limited. In fact, most
reciprocal license authors provide detailed guides on how to avoid a situa-
tion where the license would pose problems to the licensing of a derivative
work.*” So far, there is no evidence that open source licensors would use
these obligations with malicious intention trying to turn all software into
open source.*’®

So, let’s look at the term 2 b) in more detail: what does it exactly say?
The wording includes both “derived from” and “in whole or in part con-
tains” — the latter giving impression that GPL might cover more than the
derivative work concept in copyright law implies. We can rephrase the
question as follows:

1. When does a computer program derive from a GPL program? This is a
quite straightforward link to the wording of US copyright law.

2. When does a computer program in whole or in part contain a GPL
program? One may argue that this latter part creates a vague con-
tractual definition of what GPL means by a derivative work: another
program needs only to contain parts of source code under GPL to
become governed by it. However, because there is no indication of
the quantity or quality of the “contained” code and its relationship to

%16 The statement is commented e.g. in Greene (2001).

37 For example GPL FAQ in FSF (2004) has currently over twenty detailed questions and an-
swers regarding the interpretation of 2b).

8 See e.g. Boyle (2004), arguing that the intent of GPL authors and judicial common sense
speak against a scenario where any major software product would be required to use GPL if it
would include some notorious amount of GPL source code.

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 132

the combined work, it could be further argued that the interpretation
of derivative works applies also to the second part of the question. It
can hardly mean situations where non-copyrighted source code is
used. After all, if we take GPL as a copyright license, it can only gov-
ern something that is copyrighted, i.e. original work of art.*"

Finally, consider the first part 2 b). It further limits the applicability of
the license to those derivative works that are “published” or “distributed”.
These both refer to well-founded legal concepts in copyright law. In the
context of computer programs, however, their interpretation may not be
that straightforward. For example, it is unclear whether selling a software
subscription service means that the software is distributed or published at
all.

Next, we discuss different practical interpretation situations where it has
been not clear whether the whole work is a derivative of the component or
any external source code under GPL. Some of the main issues have been:

Program output

Programming libraries

Plug-ins and device drivers

Client programs and user interfaces

O LN e

Software subscription and web services

Program output. Consider a theoretical model of computer program as a
black box taking input, making a computation, and producing output. One
could say any output from a computer program is mechanically computed
from the input. Therefore, it is worth asking if the output could be inter-
preted as a derivative work of input and computation.

The question is quite topical regarding program compilers. If compiler
output is regarded as a derivative work of both the source code and the

9 Further, the first term of GPL gives support to this interpretation defining that “a ‘work
based on the Program’ means either the Program or any derivative work under copyright law: that is
to say, a work containing the Program or a portion of it, either verbatim or with modifications
and/or translated into another language. (Hereinafter, translation is included without limita-
tion in the term ‘modification’” (italics added)

OPEN SOURCE LICENSES AS ALTERNATIVE ... e 133

“work” of a compiler, could the author of the compiler have also rights to
the resulting output? If the output does not include any code or expression
from the compiler, the answer seems to be straightforward no. But what if
the resulting program includes any expression added by the compiler?
Then the question comes back to source code based interpretation.

GPL section 0 has a quite open-ended wording on the issue:

“...the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having
been made by running the Program). Whether that is true depends
on what the Program does.”

Gnu Compiler Collection (GCC) happens to be in the category where
code may be copied into the binary. Therefore it has a special exemption to
GPL:

“As a special exception, if you link this library with other files,
some of which are compiled with GCC, to produce an executable,
this library does not by itself cause the resulting executable to be
covered by the GNU General Public License.”

While the issue of derivative works is compiler specific it is practically
essential. No new programs can be made without a compiler and GCC
works in a way that some common code will be copied to every binary
compiled. Without this exception, it would be possible to build only GPL
programs with GCC under a strict source code interpretation of derivative
works.

Libraries. One frequently debated issue is if function calls to external li-
brary functions should be interpreted to make the whole program as a de-
rivative work. Here, we can distinguish between two types of situations:

- Run-time linking when e.g. an operating system function call is used
outside the executable

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 134

- Static linking when a function call is compiled into one executable
and called within the program

Some time ago there was controversy over these issues and many com-
munity people claimed that run-time linking would not constitute a de-
rivative work. However, a common understanding among free software
developers seems to be now that both types of linking constitute the com-
bined program to be a derivative work.* For instance Metzger and Jaeger
argue that if a function under GPL is loaded into the computer’s memory at
the same time with the main program and linked there to practically be-
come a single executable then the whole work should be interpreted as a
derivate of its parts.’*

On the other hand, there should remain areas where linking is allowed.
Otherwise it would not be possible to build any application to a modern
operating system without the explicit acceptance of the operating system
copyright owner. GPL has solved the question in clause 3 as follows:

“As a special exception, the source code distributed need not in-
clude anything that is normally distributed (in either source or bi-
nary form) with the major components (compiler, kernel, and so on)
of the operating system on which the executable runs, unless that
component itself accompanies the executable.”

There has been one court case where the linking issue was almost taken
under closer analysis.””* Progress Software Corporation had linked its Gen-
imi table handler to MySQL AB’s database under GPL. Technically speak-
ing, the linking of Gemini could have been called static since it was com-
piled inside the MySQL binary distribution. Progress didn’t however re-
lease Gemini’s source code and the parties ended up in a court. The court
stated in a preliminary injunction:

*0This is explained in detail e.g. in Free Software Foundation (2003).

2 Metzger and Jaeger (2002), p. 44-45.

2 See Progress Software Corp. v. MySQL AB (2002). The case has been commented by e.g. Ma-
jerus (2003).

OPEN SOURCE LICENSES AS ALTERNATIVE ... e 135

“MySQL has not demonstrated a substantial likelihood of success
on the merits or irreparable harm. Affidavits submitted by the par-
ties” experts raise a factual dispute concerning whether the Gemini
program is a derivative or an independent and separate work under
GPL, [paragraph] 2. After hearing, MySQL seems to have the better
argument here, but the matter is one of fair dispute. Moreover, I am
not persuaded that the release of the Gemini source code in July 2001
didn’t cure the breach.”

The case was settled afterwards. The court was supportive to MySQL’s
argumentation that the linking method used by Progress indeed caused
Gemini to be a derivative of MySQL. It is interesting to note, however, that
it might be possible not to release the source code of a program under GPL
without causing commercial damages. Also, any potential damages can be
stopped when the source code is released on a later date (after requests
from the copyright holder).

Plug-ins and device drivers. Consider next a situation where one devel-
ops a plug-in or device driver to a program under GPL. Is such a plug-in a
derivative work of the main program and, hence, under GPL? Free Soft-
ware Foundations Frequently Asked Questions list answers with an inter-
pretation criteria based on substance and form. It states:

“If the program dynamically links plug-ins, and they make func-
tion calls to each other and share data structures, we believe they
form a single program, so plug-ins must be treated as extensions to

the main program. This means they must be released under the GPL
77323

There has been also relevant practical debate on the issue regarding
proprietary kernel modules such as device drivers in Linux. Linus
Torvalds, the main author of Linux kernel, has added the following state-
ment to Linux’s GPL:

32 Gee Free Software Foundation (2003).

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 136

“NOTE! This copyright does *not* cover user programs that use
kernel services by normal system calls - this is merely considered
normal use of the kernel, and does *not* fall under the heading of
“derived work”.”

This note has lead many to believe that device drivers, and plug-ins in
general, are not derivative works. However, the note has little if any legal
effect. Derivative works are ultimately defined in law and not in the li-
cense. Moreover, GPL license does not allow modification of the license
and, even more importantly, Linus Torvalds himself is only one of the
numerous copyright holders to Linux kernel — some of which are un-
known. Referring to estoppel doctrine, some commentator think this note
could be taken only as an indication that Torvals is not going to support
legal action against any proprietary Linux device driver manufacturers.’

Torvalds has somewhat clarified his position during the years. In 1995,
he explained that kernel modules are “logically independent” from the
kernel itself and that they can be seen as “use” rather than “linking” to the
kernel. He thought that any device driver written for example to Unix
could be ported to Linux without the need to use GPL.* In 2003, Torvalds
further explained that:**

“- anything that was written with Linux in mind (whether it then
also works on other operating systems or not) is clearly partially a
derived work.

- anything that has knowledge of and plays with fundamental in-
ternal Linux behaviour is clearly a derived work. If you need to
muck around with core code, you're derived, no question about it.”

Obviously, Linux should be today familiar to most developers and
Torvalds’ interpretation would hence mean that basically all new kernel
modules in Linux should be under GPL.

4 Raymond (2001).
325 Message by Linus Torvalds to gnu.misc.discuss, 17" December 1995.
%26 Message by Linus Torvalds to kernel-discuss, 3" December 2003.

OPEN SOURCE LICENSES AS ALTERNATIVE ... e 137

Client programs and graphical user interfaces. Assume one develops a
commercial client program for another program under GPL. A practical
example is a graphical client to manage MySQL databases. Is a client a de-
rivative work and under GPL? MySQL AB’s licensing page stresses the
concept of distribution saying that “if you distribute a proprietary applica-
tion in any way” then GPL becomes binding.*”” Obviously, the company
regards all clients as derivative works and in order to even use a client
with other terms than GPL the developer of the client would need to buy a
proprietary license from MySQL AB. In effect, they seem to interpret GPL
as if a separate (based on both component based and source code interpre-
tation) client program from their database server — used for commercial
purposes — would be under the derivative works doctrine because of GPL
2b).328

However, neither copyright law nor Open Source Definition or GNU
GPL license for that matter place any restrictions on pure software use.
Thus merely using a work under GPL unmodified can’t be the basis for a
derivative work. So clients are free from reciprocity obligation? To this,
MySQL AB answers — in line with Linus Torvalds — that if one needs their
database in order to run the client, then one is basically also distributing
MySQL database and GPL becomes binding. Other interpretation would
be against the intention of GPL. A critic can still ask: what if the server
software is unmodified? In the end, the question is then reduced to
whether a client can be interpreted to be a derivative of the server in the
sense of copyright law.

Software subscription and web services. Some commentators have
noted that there is an “ASP loophole” in GPL. Based on our functional
definitions above, GPL has only the property of strong reciprocity obliga-
tion and not that of network use. In essence, GPL applies only when works
are distributed further. By using or running the program does not oblige

7 MySQL (2004a).

8 There is a commercial rationale for their interpretation: MySQL AB uses a dual licensing
business model. They sell proprietary licenses to those users — typically someone embedding
the database into another product — who do not want to be bind to GPL 2b). See section 7.2 for
more detailed analysis.

OPEN SOURCE LICENSES AS ALTERNATIVE ... e 138

one to the terms of the license. It is also possible to modify the program
and run it for private purposes without publishing the source code. This
wasn’t an issue when the latest version of GPL was introduced in 1991.
However, today unpublished software can be used commercially. In
network environment one does not need to “publish” the computer pro-
gram in order to use it. Most web server software runs practically hided
from end users accessing them on browsers. As Tim O"Reilly contests:

“...all of the killer apps of the Internet era: Amazon, Google, and
Maps.yahoo.com. They run on Linux or FreeBSD, but they're not
apps in the way that people have traditionally thought of... one of
the fundamental premises of open source is that the licenses are all
conditioned on the act of software distribution, and once you're no
longer distributing an application, none of the licenses mean

329
squat.”

This sort of private modification of GPL seems to be allowed under 2 b).
There are no obligations to publish the software, which is required in or-
der for GPL to be effective. But what exactly is software publication?
Outsourcing or hiring programmers to develop software in-house most
likely does not constitute a distribution. Instead, if one hires an independ-
ent developer or a company who may desire to license the software to
other parties later, then GPL most likely requires the software to be further
distributed to anyone with minimal copying costs. Still, there remains a
possibility that no third party becomes aware that the software is devel-
oped and licensed under GPL.

Obviously, the next version of GPL may address this usage model. At
the moment for example Affero Public License has included a network use
clause in effect requiring web service users to publish modifications.**® —
We return to the problem of network use obligation with Open Software
License below.

3 McMillan (2003).
30 Affero’s modified GPL is also supported by FSF (2002).

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 139
5.2.3 Patents and GPL

GPL license has a somewhat negative approach to patents. Its term 7
reads as follows:

“7.1f, as a consequence [...] of patent infringement [...] conditions
are imposed on you [...] that contradict the conditions of this Li-
cense, they do not excuse you from the conditions of this License. If
you cannot distribute so as to satisfy simultaneously your obliga-
tions under this License and any other pertinent obligations, then as
a consequence you may not distribute the Program at all. For exam-
ple, if a patent license would not permit royalty-free redistribution of
the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this Li-
cense would be to refrain entirely from distribution of the Program.

[...]”
The preamble of GPL explains the motivation behind this obligation:

“[...] any free program is threatened constantly by software pat-
ents. We wish to avoid the danger that redistributors of a free pro-
gram will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.”

In short, GPL has a built-in termination mechanism that does not allow
the development of software that requires any kind of license payments
for third party patents. In more technical wording, GPL is incompatible
with patent licensing fees: if there is a patent for some software invention
and that patent is not licensed for free to every GPL user forever, it is not
possible to develop free software for that invention.

The termination mechanism has a limited reach. In theory, a patent
holder who takes GPL software into use and then starts charging patent
license fees from other users essentially terminates the licenses of all others

OPEN SOURCE LICENSES AS ALTERNATIVE ... « 140

but itself. Further, a patent holder can naturally license the patent to the
users of other software, who utilize the patented invention.

5.2.4 GPL and License Compatibility
According to Free Software Foundation, GPL-compatibility means that

“...you can combine code released under the other license with
code released under the GNU GPL in one larger program... The GPL
permits such a combination provided it is released under the GNU
GPL. The other license is compatible with the GPL if it permits this

too.”%!

There are good reasons to use a GPL-compatible license. First of all,
source code under incompatible licenses can’t be reused in projects li-
censed with GPL. Second, since many developers prefer GPL, it may be
that an incompatible license does not attract the highest possible number
of willing contributors. There are many cases where large projects have
changed their licensing policy to GPL-compatible. For example Mozilla,
popular Python programming language and Apache projects have
adopted new licensing schemes to be compatible with GPL.**

Incompatibility is also a problem to the developers of non-GPL open
source software. In addition to proprietary licenses, GPL is in fact incom-
patible with many other popular open source licenses.” The developers
who don’t want to switch from incompatible open source licenses can’t
benefit directly or indirectly (based on derivative works interpretation)
from any GPL source code. This is why for example MySQL database,
which is licensed under GPL, had to add the following exception to their

31 See FSF (2003). To be precise, GPL section 6 explains explicitly “You may not impose any
further restrictions on the recipients' exercise of the rights granted herein.”

%2 See Wheeler (2004) for these and other examples. Some projects have simply dual licensed
their source code with GPL in addition to an incompatible license while others have revised
their licenses to be compatible.

33 See FSF (2004b) for a list. Almost all other reciprocal licenses are incompatible. Also some
permissive licenses are incompatible because of e.g. additional patent or attribution require-
ments.

OPEN SOURCE LICENSES AS ALTERNATIVE ... « 141

GPL license in order to allow PHP application development on top
MySQL without GPL requirements:***

“As a special exception to the terms and conditions of version 2.0
of the GPL:

You are free to distribute a Derivative Work that is formed entirely
from the Program and one or more works (each, a "FLOSS Work") li-
censed under one or more of the licenses listed below in section 1, as
long as:

1. You obey the GPL in all respects for the Program and the De-
rivative Work, except for identifiable sections of the Derivative Work
which are not derived from the Program, and which can reasonably
be considered independent and separate works in themselves,

2. all identifiable sections of the Derivative Work which are not
derived from the Program, and which can reasonably be considered
independent and separate works in themselves, are distributed sub-
ject to one of the FLOSS licenses listed below, and ... the object code
or executable form of those sections are accompanied by the com-
plete corresponding machine-readable source code for those sec-
tions on the same medium and under the same FLOSS license as the
corresponding object code or executable forms of those sections,

an d/r 335

Basically, combination of GPL code under this exception with other
open source licenses is possible — provided that derivative works remain
under GPL. This kind of exception makes GPL to function as a standard
reciprocal license towards incompatible open source licenses.

¥ Shankland (2004a). PHP has its own license, which is open source but incompatible with
GPL.
3 MySQL (2004).

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 142
5.2.5 Other Licenses with Strong Reciprocity

Other important licenses with strong reciprocity obligations are for ex-
ample Common Public License and Open Software License.

Common Public License. What makes Common Public License impor-
tant is not its absolute popularity but the fact that it originates from IBM
and became the first open source license Microsoft took into use.*

From functional perspective, Common Public License closely reminds
GPL. Term 3 b) iv) of the license says that source code must be available:

“A Contributor may choose to distribute the Program in object
code form under its own license agreement, provided that ... its li-
cense agreement ... states that source code for the Program is avail-
able from such Contributor, and informs licensees how to obtain it in
a reasonable manner on or through a medium customarily used for
software exchange.”

The license further defines in the first term a contribution as constituting
also derivative works:

“...changes and/or additions to the Program ...Contributions do
not include additions to the Program which: (i) are separate modules
of software distributed in conjunction with the Program under their
own license agreement, and (ii) are not derivative works of the Pro-
gram.”

A literal reading of the license indeed suggests a strong reciprocity inter-
pretation similar to GPL*’. However, the issue doesn’t seem to be very
clear at the moment. IBM’s FAQ indicates that they may have had in mind
something in the lines of standard reciprocity:

%6 Lawson (2004). Rosen (2004) discusses CPL in length in his book stating (p. 163) that “Some
amateurs believe they can write open source licenses. They should first read a good license like
the CPL and ask themselves if they can do as well”.

%71t should be noted that CPL does not have explicitly anything on larger or combined works.

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 143

“15. When I incorporate a portion of a Program licensed under the
CPL into my own proprietary product distributed in object code
form, can I use a single license for the full product, in other words,
covering the portion of the Program plus my own code?

- Yes. The object code for the product may be distributed under a
single license as long as it references the CPL portion and complies,
for that portion, with the terms of the CPL”**

On patents, CPL is somewhat more aggressive than GPL. The first li-
cense grants all licensees a royalty-free patent license in term 2 and then in
term 7 further states:

“If Recipient institutes patent litigation against a Contributor with
respect to a patent applicable to software (including a cross-claim or
counterclaim in a lawsuit), then any patent licenses granted by that
Contributor to such Recipient under this Agreement shall terminate
as of the date such litigation is filed.”

The patent termination triggers at the event of litigation and does not re-
quire that any patents would be valid. Further, the provision seems to
cover even patents not related to the software. Thus, a licensor has to es-
sentially choose between using CPL’d software and using patents (for li-
censing fees or suing for infringement).* A GPL licensor, by contrast, can
charge licensing fees and initiate patent infringement lawsuits against
other users without losing itself the right to use the software. CPL thus
goes further than GPL in this respect. It is possible that GPL will be devel-
oped in the future to include similar anti-patent functionality.**’

Open Software License. There have been many initiatives to clarify the
most used open source licenses. Perhaps most notably, Open Source Intia-

8 IBM (2002).

¥ Rosen (2004), p. 172.

0 Currently FSF’s license commentary notes that while the clause makes CPL incompatible
with GPL, “We don't think those patent license requirements are inherently a bad idea”. See
FSF (2004).

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 144

tive’s legal counsel Lawrence E. Rosen has been developing Open Soft-
ware License in more rigorous legal language to address especially the issue
of derivative works and the strong reciprocity obligation in GPL. He ar-
gues for legal formality, constructing the license to be rather an enforce-
able contract than a simple copyright license.**'

“The OSL is intended to serve the same functions as the GPL ex-
cept that it is a contract, and to be interpreted under contract law,
rather than a copyright license.”

In addition to formal legal clarity, OSL has been a platform to develop
open source license functionality between the clash of community and
corporate demands. OSL’s take on derivative works goes as follows. In the
first section, the license grants every user a right to prepare “derivative
works” but only on condition that all such derivatives “shall be distributed
under the Open Software License”. Further, OSL also tries to extend its
reach, through contractual means, into network use. In section 5, the license
defines “external deployment” as a situation where the work is:

“... made available as an application intended for use over a com-
puter network. As an express condition for the grants of license
hereunder, You agree that any External Deployment by You of a De-
rivative Work shall be deemed a distribution and shall be licensed to
all under the terms of this License, as prescribed in section 1(c)
herein.” (italics added)

So what does the network use mean? So far, there are only a few re-
marks what it could mean. Rosen himself has stated that for example if an
Internet search engine were based on a modified software component un-
der network use obligation, it would not be obliged to release the source
code because it is merely making information available, not software.
However, when the search engine would allow private searches of users’

¥ Lawrence Rosen’s message to license-discuss@opensource.org 28.7.2002.

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 145

own internal pages then the clause would perhaps apply.** Whatever the
correct interpretation, it seems obvious that such network use functionality
goes further than what GPL and CPL require. It makes OSL more restric-
tive than typical strong reciprocity obligations. It can be also questioned
whether network use provision is in accordance with the Open Source
Definition, which requires there are no obligations for software use for ex-
ample in commercial setting.**’

Regarding patents, OSL includes a simple free patent license to all OSL us-
ers for those licensor’s patents that cover the software. In earlier versions
of the license (pre 2.1), there was a stricter termination clause, which ter-
minated the license even when the licensor initiated a suit based on an un-
related software patent against open source users as with CPL term 7.
Lawrence Rosen went on to change the patent license terminology accord-

ing to the needs of the software industry (as software users):***

“...[patent termination] concern was most strongly expressed in
an email from ... HP. I have since discussed this privately with at-
torneys for several other companies. I agree with them that a change
is needed to make these licenses friendlier to companies that own
large patent portfolios.”

Maybe the most troublesome legal issue with open source licensing is in-
tellectual property infringement liability. The core of the problem is potential
strict liability for copyright and patent infringements that affect every
party taking into part in the software distribution. The basis of the prob-
lem is in the logic of intellectual property laws. It does not help the dis-
tributor that he has been in bona fide, good faith. If the work infringes a
third party intellectual property right, everyone that participates in the
distribution chain of the work may be liable to the infringed author.

*2 Gee Rosen’s message to license-discuss@opensource.org 5.11.2004. To be precise, Rosen de-
scribes the latter example as a situation where the user would upload the material to the serv-
ers of the search engine developer.

3 Section 6 of OSD reads: “The license must not restrict anyone from making use of the pro-
gram in a specific field of endeavor” and clarifies that this means especially commercial use.
GPL states that “The act of running the Program is not restricted, and the output from the Pro-

ram is covered only if its contents constitute a work based on the Program”
* Rosen’s message to license-discuss@opensource.org 25.3.2004.

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 146

Most open source licenses disclaim all warranties including potential in-
tellectual property infringements. From version 1.1 onwards, Open Soft-
ware License however includes a limited IPR warranty for third party copy-
right and patent claims. This is unheard of in other open source licenses. In
term 7, it states:

“Licensor warrants that the copyright in and to the Original Work
and the patent rights granted herein by Licensor are owned by the
Licensor or are sublicensed to You under the terms of this License
with the permission of the contributor(s) of those copyrights and
patent rights.”

Rosen has argued that the licensor is in a better position to judge
whether there are infringing contributions and recommends all projects
using OSL to make sure contributions have no IPR infringement risks.**
Such a rationale can be easily opposed: why should an open source devel-
oper warrant anything for which he does not take price in the first place?
Why should an open source developer take an additional intellectual
property infringement risk regarding for example software patents he is
not aware of and can’t control how the software will be used? - We return
to this issue below with Creative Commons licenses and explain why that
particular licensing project decided to drop a somewhat similar warranty
provision. In chapter 6, we continue the intellectual property infringement
discussion in more detail.

5.3 GNU LGPL and Standard Reciprocity

5.3.1 LGPL Functionality

GNU LGPL (short for Lesser General Public License) differs from GPL
in functionality. First, it has only the standard reciprocity obligation. This
means that direct modifications to LGPL software itself must be redistrib-
uted under LGPL (or GPL) but combinations of LGPL software with other
software can be distributed even with proprietary licensing terms. The li-

345 Rosen (2002).

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 147

cense is aimed specially for programming libraries. This is explained in
term 6:

“...you may also combine or link a "work that uses the Library"
with the Library to produce a work containing portions of the Li-
brary, and distribute that work under terms of your choice”.

It seems that linking is possible without other conditions than that users
must be always able to modify the library itself. Therefore, the source code
of a LGPLed library must be separately available with instructions on how
to re-link the library with the main program.** In practice, the architecture
of a closed source main program may require re-designed to allow re-
linking with LGPL source code separately from the main program.

Otherwise, LGPL compares to GPL in functionality. Patent clause is
similar and the language of the license in general is mostly exactly copied
from GPL. Thus, there is no need to discuss additional features.

Licenses with standard reciprocity obligations are generally speaking
more compatible than strong reciprocal licenses although they are not free
from problems. If LGPL code is linked into a larger work, the license terms
of that larger work have no obligations from LGPL and the licenses are
compatible. However, when an external component is linked into a
LGPL’ed work then LGPL is obviously incompatible with the other license
in the case the other license does not allow LGPL to override. In practice,
then LGPL seems to be as incompatible as GPL in the case the reciprocity
provision applies.

Also, LGPL has evolved to better meet the criteria of its developer, the
Free Software Foundation. The first version of LGPL from 1991 was short
for Library General Public License and recommended for all programming
libraries. A new version came out in 1999 when Free Software Foundation
started to discourage its general use because of its limited reciprocity.
Richard Stallman explained the motivation, which lead to the license name
change to Lesser General Public License:*"

36 LGPL term 6 has numerous details on how this should be realized.
37 Stallman (1999a).

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 148

“Which license is best for a given library is a matter of strategy,
and it depends on the details of the situation... we are now seeking
more libraries to release under the ordinary GPL... Using the ordi-
nary GPL for a library gives free software developers an advantage
over proprietary developers: a library that they can use, while pro-
prietary developers cannot use it... when a library provides a signifi-
cant unique capability ... releasing it under the GPL and limiting its
use to free programs gives our community a real boost... University
projects can easily be influenced; nowadays, as companies begin to
consider making software free, even some commercial projects can
be influenced in this way.”

While Stallman’s intentions are understandable, they may discourage
the use of GNU licenses in the software industry at large. Taking GNU li-
censes into use may mean that in the future the license terms are changed
to reflect the goals of Free Software Foundation, which may not be in par
with the industry understanding of intellectual property and software
business. No wonder many corporate users have written their own com-
pany specific reciprocal licenses.

5.3.2 Other Licenses with Standard Reciprocity

GPL with library exception. Since linking with LGPL may be problem-
atic in practice, FSF has an exception template to be added to GPL, which
clearly allows all kinds of linking situations (both dynamic and static)
without any obligations. It was first issued with Guile project. The excep-
tion is now used more generalized for example in the GNU Crypto project
as follows:

“As a special exception, the copyright holders of this library give
you permission to link this library with independent modules to
produce an executable, regardless of the license terms of these inde-
pendent modules, and to copy and distribute the resulting executa-
ble under terms of your choice, provided that you also meet, for each
linked independent module, the terms and conditions of the license

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 149

of that module. An independent module is a module, which is not
derived from or based on this library. If you modify this library, you
may extend this exception to your version of the library, but you are
not obligated to do so. If you do not wish to do so, delete this excep-
tion statement from your version.”

In short, linking libraries under GPL with such a library exception does
not oblige one to stay with GPL. The functionality of this kind of amended
GPL is similar to that of LGPL without some of the interpretation prob-
lems. It seems license variability is not always a good idea especially if li-
censes become too complex.

Mozilla Public License. Mozilla’s license was originally crafted in 1998
to govern the distribution of Netscape’s open sourced Internet browser.
One could describe it as the first corporate open source license. MPL has a
standard reciprocity provision in term 3.2:

“Any Modification which You create or to which You contribute
must be made available in Source Code form under the terms of this

License”

The requirement does not reach to derivative works and does not consti-
tute a strong reciprocity obligation. Term 3.7 reads:

“You may create a Larger Work by combining Covered Code with
other code not governed by the terms of this License and distribute
the Larger Work as a single product. In such a case, You must make
sure the requirements of this License are fulfilled for the Covered
Code.”

Larger Work is further defined as:

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 150

“"Larger Work” means a work which combines Covered Code or
portions thereof with code not governed by the terms of this Li-
cense.”

MPL has an explicit patent license, where contributors agree to grant us-
ers unlimited licenses for the patents they owns that apply to the whole
source code. MPL has also a patent defense clause in term 8 is, which is again
more extensive than the one in GPL. It aims to create a defensive copyright
portfolio out of MPL part of the software. If a third party patent holder ini-
tiates court action against the program authors, then all rights potentially
granted to the patent owner regarding the software will be terminated as
with Common Public License. If the patent holder wants to reconsider the
situation, the term gives him 60 days to either withdraw the suit or pay li-
censing fees.

MPL has again severe incompatibility problems. To be sure, the incom-
patibility only applies when source code is literally mixed and the recip-
rocity provision applies. In that case the license is for example incompati-
ble with all the licenses we have analyzed so far: GPL, OSL, CPL and
LGPL. The incompatibility was a reason for re-licensing the whole Mozilla
source code with a multiple license scheme in 2001:**

“It is unclear whether a developer could be successfully sued for
copyright infringement on grounds related to these perceived license
incompatibilities. However, to eliminate possible uncertainties con-
cerning this question, and to address the concerns of developers who
wished to use Mozilla code in applications whose code was other-
wise licensed under the GPL or LGPL, we decided to seek relicens-
ing of the Mozilla code to address the perceived license incompati-
bilities for both the GPL and the LGPL.”

Such a decision has not been trivial to implement since the project had
already a number of outside contributors. After three years, the relicensing

8 Mozilla Relicensing FAQ (2004).

OPEN SOURCE LICENSES AS ALTERNATIVE ... « 151

is still ongoing.> For its part, the Mozilla relicensing example tells about
the costs of license incompatibilities, how important it is to control rights
ownership and make sustainable licensing decisions.

5.4 BSD and Permissive Licenses

5.4.1 BSD Functionality

Among different open source licenses, BSD is the oldest and most well
known permissive license. Originating from university environment, BSD
can be described to reflect the principles of academic freedom. The license al-
lows, but does not require, the source code to be open. Redistribution of
software under BSD can be distributed also in binary form without source
code.

BSD must not be confused with public domain. There are two minor re-
quirements for binary distributions with other licenses. First, the BSD li-
cense including the names of the copyright holders and warranty dis-
claimer must follow with the distribution.’® Second, the license explicitly
requires that the author names can’t be used in endorsing any program
derived from the BSD source code. It's doubtful, though, whether such en-
dorsement would be possible even without such explicit prohibition.

In other words, BSD license guarantees attribution to all contributors but
protects them from liability and bad reputation following the moral rights
principles of copyright. These requirements apply also to derivative works
whether they are made through linking a module under BSD into a larger
work or developing the source code under BSD further.

It must be noted that BSD does not guarantee that the source code stays
open or that there will be new additional terms in a direct copy or a totally
new license for a derivative or combined work. Thus, any BSD licensed
component can be basically re-licensed in a new combined or derivative
work, which may carry any other license from reciprocal open source to

*9 See Markham (2004) calculating that around 2% of the Mozilla code is still left to re-license
and then calling for help noting that: “... those [parts of source code] left are nasty or irregular
in some way.”

0 In fact, all the other open source licenses discussed above also include somewhat similar at-
tribution clauses.

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 152

proprietary licenses. This also means that BSD license is compatible with al-
most any other license.

Positive endorsement requirements of permissive licenses have, how-
ever, implied incompatibility problems in the past. The original BSD li-
cense from 1989 included a clause requiring anyone using that software to
expressly mention University of California in the software documentation
or associated materials. This little detail made Free Software Foundation to
declare BSD license incompatible with GPL. In effect, the advertisement
requirement was dropped in 1999.%'

BSD license is noticeably silent on patents. Commentators have argued
that the license includes an implicit patent license: developers must give
necessary patent licenses to all software users since otherwise the use
would not be possible.”* Perhaps there is something in the fact that the li-
cense over fifteen years old.

5.4.2 Other Permissive Licenses

MIT License. MIT Public License is another very popular permissive li-
cense and has almost the same structure as BSD license though it is even
shorter. The main difference to BSD license is that MIT license lacks the
non-endorsement requirement. Since there are no other differences in
functionality to BSD, there is no need to discuss MIT license details fur-
ther.

Apache License. One of the most elaborated permissive open source li-
censes is the latest version 2.0 of Apache license. Earlier versions (1.0 and
1.1) of Apache license were literally very similar to BSD but the new ver-
sion is substantially more detailed. However, functionally Apache license
does not still differ drastically from BSD. Changes in the license language
reflect increasing corporate concerns in open source licensing.

Regarding derivative works, it is possible to use other licenses for
Apache code. Different from BSD and earlier Apache licenses, this option
is stated explicitly in the last paragraph of term 4:

*1FSF (2003).
%2 E.g. Rosen (2004), pp. 78-79.

OPEN SOURCE LICENSES AS ALTERNATIVE ... e 153

“You may add Your own copyright statement to Your modifica-
tions and may provide additional or different license terms and con-
ditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, re-
production, and distribution of the Work otherwise complies with
the conditions stated in this License.”

The license has an attribution requirement similar to BSD. It has also a
non-endorsement requirement through term 7, which states that the li-
cense does not include any implicit or other right to use trademarks and
product names of the software.

Again different from BSD, Apache license has a detailed patent clause.
First, any contributor must license his patents applicable to the software
without any royalty requirements. Further, the patent license has a far-
reaching termination clause much like CPL and MPL:**

“If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or con-
tributory patent infringement, then any patent licenses granted to
You under this License for that Work shall terminate as of the date
such litigation is filed.”

The license has a standard warranty disclaimer. As a new feature,
Apache license states explicitly the option to provide additional warranties
in term 9:

“While redistributing the Work or Derivative Works thereof, You
may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights con-
sistent with this License.”

33 See Apache (2004) for a discussion on whether this clause is compatible with GNU GPL.

OPEN SOURCE LICENSES AS ALTERNATIVE ... o 154

Artistic License. Artistic License was introduced by Larry Wall in
March 1991 as part of Perl 4.0. Reason was that GPL didn’t suit all corpo-
rate needs since it was not possible to use Perl for proprietary programs.
To maintain full compatibility with GPL projects, Perl has been since dual
licensed both under GPL and Artistic License. Larry Wall has commented
his intentions as follows:

“The intent of the Artistic License has never been to be watertight.
I'm happy if the Artistic License conveys my intent to honest folks,
and at the same time gives corporate lawyers the warm feeling that

they could wriggle out of it if they really wanted to”***

As Wall’s note suggests, Artistic license might be more hacker oriented
and tricky to understand than others. Artistic license is basically a permis-
sive license but with multiple options: user can also choose to be bind by
strong reciprocity obligation if they wish so.

Commentators have criticized artistic license because of its lacks in legal
form and vague language. There have also been attempts to clarify the li-
cense although the proposals have not become that popular. However, the
license is a good example of the still existing role of developers in writing
licenses for central and important open source projects.

5.5 Excursion: Creative Commons Open Content Licenses

5.5.1 Background

During the recent years, the basic principles of open source licenses have
been adapted also to other copyrighted works than computer programs.
Traditionally, licenses to artistic works such as music and pictures (con-
tent, in short) have been managed by copyright collecting societies. How-
ever, on the Internet individual authors can also distribute their works di-
rectly to users. Also users’ expectations to copy, modify and distribute
works on the Internet may significantly differ from the physical world.
This has opened an opportunity for new licensing initiatives.

% Larry Wall’'s message to gnu.misc.discuss 6.4.1994.

OPEN SOURCE LICENSES AS ALTERNATIVE ... e 155

It is difficult to estimate the popularity of different open content licenses
because of the short time they have been used. It seems clear, however,
that the number of high quality open content projects is quickly increas-
ing.** The most popular licensing initiative so far has been Creative Com-
mons (CC).** CC project was started in 2001 as an initiative to standardize
more liberal license terms in content. Formally, CC is a Massachusetts-
based non-profit corporation with a few employees working at Stanford
University in California and an uncountable number of volunteers con-
tributing to the project over the Internet. Major United States universities
have since started to advocate CC with Stanford University’s law professor
Lawrence Lessig in the highlight.*” First versions of the licenses were re-
leased in December 2002 and new updated 2.0 versions in May 2004. An
increasing number of websites and content on the Internet use CC li-
censes.”®

This section discusses briefly the main features CC licenses and the or-
ganization of the CC project. There are many similarities but also some
clear contrasts to open source. The following discussion aims to point out
some of the limits when the principles of open source are generalized out-
side the realm of the software industry.

5.5.2 Creative Commons Functionality

In practice CC works as an Internet service for the creation of copyright
licenses in content. Users make a few choices and can then view suitable
licenses. Licenses have three representations: (1) technical rights descrip-
tion, (2) detailed legal license text, and (3) short explanation of what the li-

3 One of the most prominent projects is Wikipedia, an online encyclopedia based on user
contributions, which started in 2001. Wikipedia aims to make proprietary encyclopedias such
as Britannica obsolete within the next 5 years. See “Wikipedia Founder Jimmy Wales
Responds”, Slashdot, 28" July 2004. Available at http:/ / www.slashdot.org /

¥ See http:/ /www.creativecommons.org /.

%7 Lessig is well known by his popularized books on law and technology. His latest work ad-
dresses especially problems with media ownership of the culture and introduces CC as one
Eroposal for a change. See Lessig (2004).

* In 2003 Creative Commons licensed one million works. By May 2004, the total number of
CC-licensed works was over three millions. A well over 50% of all CC-licensed works are text,
the rest being roughly equally divided to sound, images, video and “interactive”. See Mike
Linksvayer's message on 11" June on Creative Commons discussion list available at
http:/ /lists.ibiblio.org / pipermail / cc-licenses / 2004-June / 000953.htm1

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 156

cense means. There are a number of different CC licenses available. Pub-
lished works are then linked to the selected license located at CC website.

License terms. All CC-licenses have similar structure including terms
common to all licenses and selected specific terms. In common terms, all CC-
licenses allow copying, distribution and public performance and display of
the work without any license payments. In other words, the licenses give
users rights without obligations. Works under CC may be used, copied
and distributed further without additional permissions or license fees. In
addition, CC common terms state stat the licenses do not interfere with fair
use rights (such as citations, private use etc), first sale or the freedom of
expression. Moreover, common terms state that works can not be used
with digital rights management systems, which may limit any right
granted in the licenses including fair use, first sale and the freedom of ex-
pression.

In addition to the common terms, any CC-license may have one or more
of the following interchangeable specific terms restricting the use of such
works to some extent:

Attribution. You let others copy, distribute, display, and
perform your copyrighted work - and derivative works
based upon it - but only if they give you credit.

Noncommercial. You let others copy, distribute, display,
and perform your work - and derivative works based upon
it - but for noncommercial purposes only.

No Derivative Works. You let others copy, distribute,
display, and perform only verbatim copies of your work,
not derivative works based upon it.

Share Alike. You allow others to distribute derivative works
only under a license identical to the license that governs
your work.

© O &6

Figure 16. Possible terms with related logos in CC-licenses.

OPEN SOURCE LICENSES AS ALTERNATIVE ... e 157

Additionally, there are several specific CC-licenses the number of which
is supposed to grow. In this short excursion we can only briefly discuss
some of the most interesting ones.*” “Public domain” and “founder’s
copyright” address a shorter expiration for copyright: public domain
would expire immediately and founder’s copyright after 14 years.’® Also
the most popular open source software licenses GNU GPL and LGPL are
available from Creative Commons as “CC-GPL” and “CC-LGPL”
branches. Technically, these external licenses are linked from Free Soft-
ware Foundation’s website and CC only adds to the work a CC-symbols,
summary of the license and technical rights description.

Comparison to open source. While CC and open content in general has
much in common with open source, there are certain differences. For in-
stance, software authors themselves have written many popular open
source licenses. They have codified the existing sharing culture of com-
puter programmers and, thus, open source licenses have not needed much
enforcement. Instead, CC has taken a strict top-down approach. The licenses
were carefully prepared and marketed by an entity specifically founded
for that purpose.®' This may affect license interpretation: there do not, as
of yet, exist such community norms as with open source licenses.*” It is
also interesting to note that most CC-licenses go explicitly against the
Open Source Definition in restricting for example the commercial use of

works.3¢

%Y Licenses that can be only mentioned include “Re-combo” or “Sampling”, which clarifies the
legal status of creative modification of musical works, and ”Share music”, which basically al-
lows music to be non-commercially copied and distributed. In addition, a recent large-scale ini-
tiative “Science Commons” aims to answer to the open access debate bringing CC-principles to
academic publishing. See e,g, Nature (2001) on “open access” discussion.

¥ In the United States, the copyright term was initially 14 years when copyright was for the
first time taken into use in 1790. “Founder’s copyright” therefore refers to the term the “Found-
ing Fathers” of the United States agreed upon. It should be noted that it is legally unclear
whether one can withhold from copyright and release the work in the public domain before its
expiration

%! To compare, in principle anyone can submit a new license to Open Source Initiative to be
certified to comply with Open Source Definition. Creative Commons doesn’t have such proc-
ess.

%2 For example, most free software users accept Free Software Foundation’s interpretations of
GNU GPL license as stated in the FAQ on their website.

%3 Open source definition, section 6, does not allow discrimination against any type of use. This
includes discrimination against commercial use of the programs.

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 158
5.5.3 Risk Allocation and Warranties

We noted above that Open Software License differed from other open
source licenses in that it offered an intellectual property infringement war-
ranty. Also the first versions of CC-licenses include a clause shifting the
burden of third party intellectual property claims to the original licensor.
They state:

“By offering the Work for public release under this License, Licen-
sor represents and warrants that ... 1. Licensor has secured all rights
in the Work necessary to grant the license rights ... without You hav-
ing any obligation to pay any royalties ... 2. The Work does not in-
fringe the copyright, trademark, publicity rights, common law rights
or any other right of any third party or constitute defamation, inva-
sion of privacy or other tortious injury to any third party.”

Beneficiaries of this kind of warranty clause are for example different
middlemen and service providers who can take licensed works into use
and distribute them further with lower risk. If third party rights have been
violated, the author is in the end liable for the infringement. Unfortu-
nately, such a warranty clause is far from bullet proof. If the author is un-
known or bankrupt, the burden of third party liability will be practically
on all those authors and users who are sued. This can be quite unjust espe-
cially for users and authors acting in good faith. Under free licensing sys-
tems, they don’t ask license fees for copies but they may still be held liable
for copyright infringements.

The intellectual property warranty was removed from 2.0 versions after
heavy criticism by licensors.”®* Nevertheless, the basis of the problem is in
the liability rules of copyright law, not in the licenses. Unforeseeable liabil-
ity remains as one of the things that may stifle the development of large-

¥* According to the license revision announcement the warranty provision was removed be-
cause: “Ultimately we were swayed by a two key factors: (1) Our peers, most notably, Karl
Lenz, Dan Bricklin, and MIT. (2) The realization that licensors could sell warranties to risk-
averse, high-exposure licensees interested in the due diligence paper trial, thereby creating nice
CC business model.” See Brown (2004).

OPEN SOURCE LICENSES AS ALTERNATIVE ... e 159

scale open content and open source projects alike. The risk of liability for
violating third party intellectual property increases as the source code or
content is scattered. This makes it hard to start open projects that involve
many participants and potential right holders such as open movies. - We
continue the liability discussion in the next chapter.

5.5.4 Internationalization and Formalities

Adaptation approach. Creative Commons is the first major open licens-
ing initiative, including both open content and open source, which aims at
license internationalization. The CC leaders who come mainly from the US
academic legal community believe the license texts must be translated to
national languages and adapted to national jurisdictions. An assumption
for internationalization is that an English language license based on US
copyright law text may not be valid in other countries.

One problem with national adaptations is possible inconsistencies. In-
deed, a quick comparison shows that there seems to be substantial differ-
ences in practice. ** Obviously, the CC project gave substantial freedom to
each national internationalization team. Many, but not all, explicitly state
that the license should be interpreted as a contract.*®® Some translations in-
clude notorious terminological changes; for example instead of distribu-
tion they may speak of making publicly available. In many cases, the defi-
nitions are taken from national copyright laws. In most adaptations, fair
use is edited to match the European copyright laws, which typically in-
clude a closed long list of limitations to the exclusive rights.* An explicit
reference to database right is added on some, but not all adaptations. Only
few licenses take the issue of moral rights explicitly into consideration.*®

Forum shopping. Internationalization through translation and legal ad-
aptation makes the licenses more understandable and also legally valid in
more jurisdictions. However, the approach has also clear drawbacks. As a

%% See International Commons at http:/ / creativecommons.org/ projects/international /
%6 At least Spain, Holland and France.

%7 British version includes an appropriate reference to “fair dealing”.

%5 Interestingly Australian version is taking moral rights most explicitly on the table.

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 160

practical matter, the usability and interoperability of licenses may suffer
because users have to deal with a number of different license versions in
different languages with different terminology. As a legal matter, the CC-
licenses state:

“You may distribute, publicly display, publicly perform, or pub-
licly digitally perform a Derivative Work only under the terms of this
License, a later version of this License with the same License Ele-
ments as this License, or a Creative Commons iCommons license that
contains the same License Elements as this License”

Consider that one goes to CC-website and chooses to license the work
with a CC-license adapted and translated into Finnish. According to the
cited term above, that does not mean that in Germany the work would be
used with the Finnish version of the license. Thus, the author can’t control
which version of the licenses the user is going to choose. In the end, users
may have possibilities to “forum shopping” inside an internationalized
open content licensing project — as in the real world.

Comparison to open source. It can be argued, however, that license in-
ternationalization through translation and legal adaptation may not be
crucial for the actual success of open licensing. The most popular open
source software license GNU GPL has been used since 1989 all over the
world without any known legal case, where the license or a part of it
would have been judged invalid.*® The fact is that also CC licenses are be-
ing applied in all jurisdictions. At least so far, the actual behaviour of users
has counted more than detailed legal interpretation and risk assessment.

369 Tt must be admitted that there is not much counterevidence either; in one recent case GNU
GPL was held specifically valid in a German lower court decision by Landgericht Miinchen I
on 19th May 2004. See the decision at http:/ /www .jbb.de/urteil_lg_muenchen_gpl.pdf.

OPEN SOURCE LICENSES AS ALTERNATIVE ... « 161

5.5.5 Concluding Remarks

The time has proved the early prognoses of copyrights death on the In-
ternet exaggerated. >’ Instead of collapsing, copyright law has been com-
plemented by more liberal licensing practices on the Internet. In a way, the
copyright law has been fixed on its own merits.””! However, there remain
many kinds of legal challenges on the way the problem of strict liability in
copyright law being perhaps the most troublesome. In the long term, if
Creative Commons and other open content licensing models get increasing
support from the surrounding media industry, there should be room for a
change in the law. — We return to this issue at the end of he next chapter.

There is also the challenge of attitudes, community creation and the nec-
essary technical infrastructure. Leading a huge project on open content li-
censing requires community support. Creative Commons top-down lead-
ership model might be its weak point that may alienate some authors. In
addition, it is still rare to attach rights descriptions to works published on
the Internet and most users don’t read complex license texts. Only educa-
tion and time will tell if the open content licensing challenges will be really
adopted by the masses the way open source licenses have been adopted by
software developers.

5.6 Summary: Competition Between Evolving Licensing Standards

New open source licenses and rewritten versions of old ones obviously
will come up. One could argue that in the long run open source licensing has
become more corporate-friendly and many licenses have evolved to answer
the needs of the software industry. The licenses now generally address the
existence of software patents in detail. The limits of derivative works have
been tailored to new software uses on the market. In side with the com-
mercialization trend, also the ideologically loaded GNU licenses have sur-

%7 For example Negroponte (1995), p. 58, famously claimed that ”Copyright law is totally out of
date. It is a Gutenberg artifact. Since it is a reactive process, it will probably have to break down
completely before it is corrected”

1 Lessig (2004) has noted that CC tries to complement rather replace the current copyright sys-
tem. See also Merges (2004), noting that the claimed expansion of intellectual property rights
may have been balanced to some extent by the recent open licensing initiatives.

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 162

vived and proved they have a role in the markets. GPL is no longer re-
ferred to as a cancer of the industry.

In side with the evident evolution in licensing details and techniques,
however, the main functionality of the licenses as abstracted in this section
has not changed that fast. Each license can be with relative ease classified
into certain well-defined group. The following table summarizes from the
foregoing presentation the functional features of some of the most popular
licenses from copying, distribution and modification (derivative works)

perspective:

Free Standard Strong Network

distribution Free use Open code reciprocity reciprocity reciprocity
Proprietary - - - - - -
Shareware X - - - - -
Freeware X X - - - -
BSD, MIT, Apache X X X - - -
LGPL, MPL, ... X X X X - -
GPL, CPL, ... X X X X X -
AfferoPL, OSL, ... X X X X X X

Table 9. Copyright functionality in different license types.

Regarding other relevant license features, we can conclude that:

- Only the latest industry prepared open source licenses have explicit
patent and trademark licensing and termination requirements. It can
be assumed that future licenses will continue to have such explicit
terms.

- When intellectual warranty provisions have been proposed, they
have soon been removed because of strong community disapproval

- All licenses include explicit attribution requirements, and some even
extended reputation requirements, thus enforcing the moral compo-
nents of copyright

When a new software project is initiated, licenses do compete. The com-
petitive situation has both positive and negative implications. For one, li-
censing options are good for the variety of individual open source projects.

OPEN SOURCE LICENSES AS ALTERNATIVE ... ¢ 163

As we noted earlier, projects may have different ethical, technical and
business goals, which can be satisfied most concrete at the level of license
terms. However, competing situation combined with the fact that many
open source licenses are in practice incompatible with each other may in
the long term lead to open source projects, which are not able to benefit
from development efforts in other projects. In short, this may have negative
effects to the open innovation model that has been identified with the success
of open source development. Developing Open Source Definition towards
compatibility standard with the cooperation of license authors could be a
long-term solution to the compatibility problems.’”

2 Open Source Initiative has considered amending Open Source Definition to stop license pro-
liferation. See Russell Nelson’s email to license-discuss@opensource.org March 2, 2005. This
does, however, affect the compatibility issue only indirectly.

DEFENSE WITH OPEN SOURCE e 164

6 DEFENSE WITH OPEN SOURCE: INFRINGEMENT RISK
MANAGEMENT AND PATENTS

Any use of open source in business environment includes legal risks. In
this chapter we discuss how software patents and other intellectual prop-
erty infringement risks can be managed at individual firm and social pol-
icy level. We start from the more general intellectual property rights in-
fringement risk management alternatives in open source development.
From there, the discussion is extended to the social problem of software
patents especially in the European policy context.

6.1 How to Manage IPR Infringement Risks?

6.1.1 Background

Next we discuss defensive rights management alternatives for open
source developers. The recently much debated legal cases initiated by SCO
against large Linux users are perhaps the best examples of how intellectual
property rights can be — in theory — used as a strategic tool against particu-
lar software users. Open source, and distributed components based soft-
ware development methodology in general, highlights the risks of poten-
tial third party copyright and patent infringements.

While SCO case is not a good example of a successful IPR offensive be-
cause SCO has been unable to prove actual infringement, it has forced
many companies to rethink their intellectual property defense strategies. It
is very well possible that some companies have hidden and more easily
verifiable rights to existing open source products, which may prove trou-
blesome in the future. For example, a leaked memo from Hewlett Packard
shows how seriously a large IT enterprise takes the potential risk of patent
infringement lawsuits against open source.””

3 See Barr (2004), for a memo from July 2002, where HP executives assume that: “Microsoft is
about to launch legal action against the industry for shipping Open Source software that may
force us out of using certain popular Open Source products.”

DEFENSE WITH OPEN SOURCE e 165

Theoretical framework of this section is mainly based on the economic

75 and patent strategy”’®.

theories of product liability”, liability insurance
Taking a practical approach, we try to build a forward-looking framework
for the management of such risks in open source development. We also
test the framework presenting evidence on actual risk management prac-
tices gathered from publicly available market news, interviews and patent
statistics.

For the purpose of our risk management analysis, we identify three
types of different organizations who develop open source: IT enterprises,
open source companies, and community projects. With IT enterprise we re-
fer to established big companies who have numerous product offerings in
the computer and software markets including significant interest and in-
volvement in open source software. Typical IT enterprises are for example
Apple, HP and IBM but also Microsoft because of their role as a kind of
counterpart to open source. Second, with open source company we refer to
any small or medium size company that develops and markets software
products based on open source components. Pioneering in this sense are
those companies, which are build around well-known open source prod-
ucts such as Red Hat Inc. (GNU/Linux) and MySQL AB (MySQL). Third,
with open source community project we refer to non-commercial but signifi-
cant open source development projects such as Linux or Apache.

This section is organized as follows. First we discuss the nature of poten-
tial third party copyright and patent infringements in open source soft-
ware. We see them as accidents towards the users, which are caused by the
actions of the right holder. Then, we four different defensive risk man-
agement alternatives are introduced: (1) liability allocation in software li-
cense, (2) liability insurance, (3) acquiring patents, and (4) risk avoidance.
To test the relevance of the framework, actual risk management policies
are reviewed. We find that the risk management strategies of established
IT enterprises, pioneering open source companies and open source com-
munity projects each differ from the others. Obviously, an optimal strategy
depends on the actual infringement risk, which may be significantly dif-

74 B.g. McKean (1970), Calabresi (1970), Epple and Raviv (1978), Viscusi and Moore (1993).
75 B.g. Shavell (1982), Sarath (1991), Winter (1991).
76 E.g. Teece (2000), Shapiro (2001), Bessen (2004).

DEFENSE WITH OPEN SOURCE e 166

ferent for various types of developers. Finally, the chapter concludes with
a discussion on the implications to long-term risk management and licens-

ing policy.
6.1.2 Nature of Third Party IPR Infringements

Infringements as Accidents. Basic relationships between involved par-
ties in an infringement situation are characterized in the following figure:

IPR
holder

Infringement claims
F 3 v A ~
Original Developer . | Developer | » | Developer , End
author 1 2 n] user]

Infringing contribution

Figure 17. Developer-chain and IPR infringement.

Assume there is an open source product, where Developer, (acting in
good faith) adds a contribution, which infringes IPR holder’s copyright or
patent. Now, every subsequent developers from Developer, to Developer,
can be liable according to copyright and patent laws even if they did not
know that the software infringes a third party right. Developers can vio-
late copyright by e.g. copying, modifying and distributing the infringing
source code contribution. Developers can also infringe patents by e.g.
making, selling and commercially using patented inventions embodied in
the infringing contribution. In essence, such direct intellectual property in-
fringements are under a strict liability rule.

First, we believe that the situation of an individual developer towards
users (any subsequent developer or the end-user) is significantly analogi-
cal to a product liability setting. Therefore, we start by analyzing IPR in-
fringement as an accident resulting in a negative externality for all open
source developers and their users. Our question is, following Calabresi’s

DEFENSE WITH OPEN SOURCE e 167

seminal treatise on the economics of accident law, what are the costs of
such accidents and how open source developers can minimize them within
the developer-chain.””’

Second, we open up the “black-box” of infringement claim and ask how
the infringement risk can be managed towards the cause of the accident,
namely the IPR holder. The question then becomes, what means an indi-
vidual developer has to protect itself from unwanted actions from the side
of IPR holders.

Before our analysis of risk management alternatives, a more detailed ex-
planation of the nature of IPR infringements as accidents is in place. We
aim to demonstrate that since the infringements are hardly avoidable ex
ante, the accident analogy is indeed applicable.

Copyright. It is possible to think of two types of copyright infringe-
ments. Either source code has been copied in ways not permitted in the
copyright law or license terms have not been honored.””® Infringements
may be in both in-house or third party produced components. Problems
with the latter are naturally more difficult to identify.

Literal source code copying can be avoided to some extent in advance.
However, it requires that the suspected copied source code is available,
which typically is not the case. Also technical analysis of source code copy-
ing does not go very deep. There are clear limitations for example in iden-
tifying structural copying.

Also license term infringements can be avoided to some limited extent
in advance. A prerequisite is that all licenses in a given product can be
listed from external files, source code etc. Further, the known licenses can
be evaluated for possible third party rights reservations and other non-
standard terms. Unfortunately, the interpretation of license terms may not
be clear especially if individual program authors have written them. As
noted, there is also disagreement in the interpretation of many standard
open source licenses. Not surprisingly, Free Software Foundation enforces

377 See Calabresi (1970).
78 In fact licenses can be also based on other rights than copyright but for the purposes of this
section it is sufficient to address licenses simply as based on copyright.

DEFENSE WITH OPEN SOURCE e 168

out-of-the-court over fifty GNU GPL license violations annually and esti-
mates that they are becoming more commons.””

From the above, it follows that an open source software developer or
user who utilizes third party components has only very limited means to
avoid copyright infringement risks in advance. If the source code of the com-
ponent is not fully available, it is practically impossible to evaluate the
risk. The availability of the source helps infringement analysis theoretically
according to the rough lines explained above but in any case the analysis
will be costly, time-consuming and far from complete. Source code avail-
ability may also actually rise the infringement risk since it makes easier for
offensive rights owners to identify infringements.

Patents. In addition to copyright, there may be hidden patents, which
are not known until the software has become popular and well known.
The risk of patent infringement grows with the geographical market area
and is obviously greatest in the United States markets. It is however diffi-
cult to estimate the real risk of patent infringement. Obviously many com-
monly used open source software components already infringe patents.
For example Open Source Risk Management Inc.,, who sells IPR insur-
ances, claims that Linux kernel could infringe almost 300 different patents.
— Earlier they declared Linux does not infringe copyrights.*®

As noted, the identification and evaluation of patent infringement risk is
in practice close to impossible. Since most patent claims do not include
source code, it is not possible to do technical searches based on available
patent data and open source code. In practice it may be possible just to
avoid infringing well-known patents and follow the patent portfolios of
close competitors. Although, even keeping up with the competitors may
prove both prohibitively costly and difficult because of the dynamism of
software industry.

Already thousands of software patents have been granted in different
parts of the world. It would be unrealistic to claim that even the largest IT
enterprises could know with precision whether their large products in-

379 Cohen (2003).
30 OSRM (2004a), OSRM (2004b).

DEFENSE WITH OPEN SOURCE e 169

fringe third party patents. However, large enterprises have by definition
better means to defense themselves against possible infringement claims.
They typically own patent portfolios that can be used strategically for
counterclaims and cross-licensing. Little open source companies, which
lack extensive patent portfolios, need other defense options.

In short, even careful developers and users regardless of their size have more
limited possibilities to avoid patent than copyright infringements. The risk is es-
sentially bigger for the developers of products with large market share.
Paradoxically, these are also the developers and programs that are perhaps
socially most beneficial. Again, open source code does not help in defense
but merely increases the infringement risk since patent owners may more

easily identify infringements.

6.1.3 Alternatives to Manage Risks

License Disclaimers and Warranties. According to the cheapest cost
avoider principle, the costs of accidents should be allocated to the party
who can avoid them with comparatively lowest costs.”®' For example if we
assume that developer has superior knowledge of the risks involved in his
software, he should also bear the most risks from accidents resulting from
its use. Having some, but not excessive, liability increases investments in
new product development and also the overall product quality.’® In soft-
ware development, however, the standard liability rule has been caveat
emptor, i.e. the subsequent developer or finally end-user is liable.

The end-user liability rule may not be economically efficient, if the user
has substantial transaction costs in finding the actual level of infringement
risk. In many cases such information is simply not available. On a positive
note, user liability may increase competition if users are more cautious in
finding the safest products and there is no product, which would be seen
as inherently less risky. Moreover, in some cases users are better able to
determine the actual case-by-case risks as they have better information on

how they are going to use the software (e.g. internally, in public).**

31 Calabresi (1970), McKean (1970).
32 Viscusi and Moore (1993)
¥ McKean (1970), Epple and Raviv (1978)

DEFENSE WITH OPEN SOURCE e 170

Historically, liability limitations were needed in software licenses
mainly because developers wanted to avoid the risks of any damage
caused by technical errors or bugs. It has been usually argued that it is not
practically possible to write complex bug-free programs.*® In addition,
since each program copy is identical to the other, any error will multiply,
and potential liability burden for developer would be huge. Requiring
stricter liability would therefore imply significantly higher software prices
without much increase in quality (no new functionality, only less bugs).

Also open source license disclaim any kind of warranty for program-
ming faults or bugs. These risks are shifted down from the original devel-
opers to subsequent developers and end-users. Most popular open source
licenses limit also the developer’s liability from legal errors including
copyright and patent infringements to the maximum extend permitted by
the law.

Drawing a difference between technical and legal errors is rare in open
source licenses. As we noted in the previous chapter, Open Software Li-
cense includes a more specific infringement warranty (indemnification)
clause that does shift more liability towards original developers. In prac-
tice, this means that if a subsequent open source developer intends to war-
rant itself from IPR risks against the original developer, an additional in-
demnification clause need not be negotiated. Such a clause is efficient only
to the extent the original developer has resources to defend the user in
court. In the event the original developer is unknown or bankrupt, the
clause has no effect whatsoever. This leads us to discuss the third party in-

surance alternative.

Additional Insurance. Independent of the liability allocation, insurance
is arguably a desirable alternative from social policy perspective.”® Ideally,
when compensation maximum has been agreed on, that can be used fur-
ther as a liability limitation in license and contractual obligations. If devel-
opers have the liability, they would carry only the risk of paying deducti-

¥ E.g. infamously by Brooks (1975).
35 Shavell (1982).

DEFENSE WITH OPEN SOURCE e 171

ble in the event of a proven infringement. Users would participate in in-
surance payments by paying slightly higher prices for their software.

An extreme option would be a public insurance system much like the car
insurance systems commonly used. However, that would also imply high
administrative costs and obviously software development would have to
be monitored by further government rules. Perhaps some development
methods would be banned altogether.”

Compared to the liability limitation clause in a license, insurance surely
costs more and may not be available to non-commercial community de-
velopers. In theory, insurance is economically rational choice when acci-
dents are rare and difficult to estimate but when the event finally occurs,
the results can be financially devastating. Insurance is also a mean to price
IPR infringement risk more objectively on the markets.

Pricing such insurances is however problematic in practice. Since e.g.
patent infringement cases are rare, there is little precedent to efficiently
price IPR liability insurances. Another problem is that the developers have
superior information about the risks, which is costly to acquire independ-
ently by the insurers. In such a new market, insurance providers also limit
their responsibility and it may be impossible to get an insurance that
would cover all types of IPR risks in all possible markets. This also seems
to be case: for example patent litigation liability insurance has not been an
option mainly because the supply of such insurances has been low. There is
however some evidence, that the supply would be increasing.*”

The economic theory suggests that if liability insurance is not available

to all, then also litigation incentives should be cut.**

If incentives to litigate
are by contradiction on the rise, then markets are inefficient and we must

seek for the next risk management alternative. Enter patents race.

Strategic Positioning in Patents Race. Many economists have compared
software patenting to an arms race where all market participants try to
patent as much as they can. The result has been an extensive patent thicket,
whose effects are further amplified by the sequential and cumulative na-

36 McKean (1970)
*7 Betterle and Davison-Jenkins (2001), CJA Consultants (2003).
38 Sarath (1991).

DEFENSE WITH OPEN SOURCE e 172

ture of software development.”**The effects of patent thicket on innovation
and licensing are not clear but it has been suggested that they can be in
fact negative.*”

In such an environment the developer has, besides extensive own pat-
enting, basically three options: (1) acquire adequate patent portfolio by us-
ing mergers and acquisitions (2) purchase required amounts of patents
from competitors, or (3) license the required patents either directly or from

a patent pool.*”

Of course, the developer can also decide to do nothing
and deal with the situation only if it ever emerges.

These options can feasible for large IT enterprises, which often use either
of them to capture and protect their position in different areas of software
development. However, the first two options are typically very expensive
and thus not even in theory available for typical open source developers.
The last option is more common but not very viable for most of open
source developers, which rely on GNU GPL as their license of choice. The
reason is obvious: under GPL the licensee has to get a license for all future
uses including derivate works. Patent pools do not normally offer that
kind of licensing option, at least by default.

But how threatening are patents after all? It has been commonly argued
that a mere infringement claims do not yet mean that open source could
not be used. It has been estimated, that in the United States only 1,5% of all
patents are ever litigated and as few as 0,1% are litigated until trial.>** Fur-
ther, as many as 46% of all patents litigated to trial are finally held inva-
1id.*® When we also take into account that the most potential court case
targets have patents of their own for defending purposes (cross-licensing
and counter suits), then perhaps ignorance of the whole patents race may be a
reasonable strategy for smaller companies and community projects.

% See Bessen (2004) for an overview. The concept of patent thicket is not new. A similar devel-
opment has been seen with many other emerging technologies such as semiconductors (Lem-

L}/ 2002) and copying machines (Melamed and Stoeppelwerth 2002).

Shaplro (2001), Bessen and Hunt (2003).

*1See e.g. Bednarek and Ineichen (2003).
2 Lanjouw and Schankermann (2001) and Lemley (2001)
3% Allison and Lemley (1998). This has lead Lemley and Shapiro (2004) to characterize patents
not as exclusive but rather as “probabilistic” property rights bearing similarities to lottery tick-
ets.

DEFENSE WITH OPEN SOURCE e 173

Risk Avoidance. Finally, one may try to avoid IPR risks as much as pos-
sible. Within the development process, risk management policies can be
improved by using formal written copyright assignments and prior patent
searches and assurances from contributing developers. To be sure, an
“avoidance at-all-cost” strategy can’t be effective because, as we noted,
many infringement risks simple can’t be avoided in advance. Also, if open
source products become standard, as has already happened in e.g. Internet
technology, avoidance would be socially inefficient.

A long-term “environmental” avoidance strategy is to influence the le-
gal policy to limit the reach of IPRs. Such lobbying is typically done
through industry pressure groups or by helping grass-root activists. It
makes economically sense to invest in lobbying as long as the marginal
benefits (in this case lower IPR-risk) exceed the marginal costs.**There are
some problems, though. One is that the political system is sometimes resil-
ient towards lobbying and it is hard to predict the outcome. Also, in the
case of IPRs there are typically strong opponents, which may neutralize
any efforts.

Summary. Table 10 below summarizes the scope, effectiveness and costs

of the discussed risk management alternatives.

Option Scope Effectivity Price
Disclaimer Licensees Low Low
Insurance Market Relative Relative
Patenting Market High High
Defense alliance Market High Relative
Avoidance Market Low Low

Table 10. Comparison of different IPR defense options for open source developers.

While a liability disclaimer in license is easy to add, it does not protect
the developer towards IPR holder. Insurance is relatively more effective
and can, at least in theory, protect developers against both licensees and
IPR holders. However, in practice the IPR liability insurance markets are
not very well formed yet. Patenting is a seen as a highly effective risk

34 Landes and Posner (2003).

DEFENSE WITH OPEN SOURCE e 174

management option though it costs undoubtedly more than any other al-
ternative. Also, the real infringement risk of patents can be questioned. Fi-
nally, the rationality of avoidance should be judged against the lost bene-
fits from using the risky software and lost resources in long-term political
lobbying.

6.1.4 Actual Management Practices

In order to understand the actual management practices, qualitative in-
formation was collected from public press releases and interviews on the
Internet and patent statistics. As noted, open source developers were di-
vided into three categories: (1) large IT enterprises who sell ”solutions”
and large open source installations, (2) small pioneering open source com-
panies who typically have an innovative open source product, and (3)
community-lead open source projects without a company background.
Next, we discuss the risk management practices of these three different
types of organizations towards users (costs of accidents) and third parties
(causes of accidents). Our aim is to preliminary test the feasibility of the
theoretical framework.

IT Enterprises. When Utah-based software company SCO claimed in
spring 2003 that Linux infringes their intellectual property, large IT enter-
prises selling and supporting Linux systems didn’t respond immediately.
Soon, however Hewlett-Packard started a new era by offering a limited
warranty to its customers in fall 2003.* Novell and Red Hat followed in
the beginning of 2004.** This way intellectual property warranties become
a kind of additional warranty business for large IT enterprises.

Admittedly, these warranties are far from perfect: HP indemnifies only
claims (both copyright and patents) in SCO case, Novell has limited in-
demnification to copyright claims, and Red Hat only promises to change
infringing components without additional costs to the user. In addition,
according to a recent survey, most corporate Linux users have not ex-

35 HP (2003).
3% Novell (2004), Red Hat (2004)

DEFENSE WITH OPEN SOURCE e 175

pressed interest in these programs.*” It seems evident that such warranty

policies only reflect how risk-averse IT enterprises are towards IPR

infringements.

Some IT-enterprises have joined Open Source Development Labs to cre-

ate a joint Linux legal defense fund for Linux end users. The fund is not

tied to any single vendor’s Linux-distribution, but only supports end-users

against SCO's suits, which confines its scope significantly.”®

The patenting activity of some relevant companies as well as the ap-

proximate size of their patent portfolios is presented in the figure 18 and

table 11 below:*”
4000
3500
3000
2500 —— Microsoft
—— Apple
2000 SUN
IBM
1500 r///////J —HP
1000
500 =
0 +—=—7— — ‘ — :
R S S S VR W SR S Y
o PP P g PP PSS
NN AN MEN E EN EN EON

Figure 18. US patents granted between 1984-2004. Source: USPTO.

37 Fichera (2004).
% Open Source Development Labs (2003).

¥ Patents data was collected from US Patent and Trademark Office’s online database. In the
figure, HP includes both Hewlett-Packard and Compaq. Data includes all kind of patents
granted to the named companies; most of the patents granted in recent years could be catego-

rized as ”“software patents”.

DEFENSE WITH OPEN SOURCE e 176

IBM 33665
HP 13898
SUN 4062
Microsoft 3359
Apple 1776
Novell 444
Red Hat 1

Table 11. Total number of US patents granted from 1984 to early August 2004. Source:
USPTO.**

Known open source promoters IBM and HP have clearly the biggest
patent portfolios though most of their software patents are from the late
1990s. Many early patents cover only hardware. It is worth noting that
while the patenting activity in general has increased during the last few years,
Apple Computer has been granted significantly fewer patents now than
five years ago. It is also interesting to note that Novell has just fewer than
500 patents total and Red Hat, which should be counted as an open source
company, was granted its first patent in 2004. Still, these two companies
feel confident to offer IPR insurances for their Linux customers.

It seems evident that patenting will increase in the future. For example Mi-
crosoft has announced to apply for over 3000 patents, which means multi-
plying its current patenting activity a few times.*”" It obviously aims to
reach the level of IBM and HP.

However, there seems to be no immediate risk of patent infringement
claims by the biggest patent owners. First, all of them subscribe to the mu-
tual defense policy. IBM has said to use its patents only to defend itself in
potential open source cases. For instance, after SCO had sued IBM for
Linux infringements, IBM filed a countersuit in terms of three patent in-
fringements.*” Also HP has committed to open source and has prepared to
defense itself against possible patent offensives*® Even Microsoft has pub-
licly said they look only for licensing possibilities, not attacks.** Second,

% The number of those patents whose annual fees have been paid, and are an active part of the
company portfolios, is obviously lower (Lanjouw and Pakes 1998).

“! Fried (2004).

402 Shankland (2004b).

403 Barr (2004).

% Stone (2004). Of course, none of these statements has any legal effect.

DEFENSE WITH OPEN SOURCE e 177

some of the companies have started to dedicate patents royalty-free to the use
of open source developers. In January 2005, IBM donated 500 patents to
open source developers, then SUN granted 1200 patents with their Solaris
announcement, and according to the latest news Computer Associates is
considering to follow.*”

Open Source Companies. Interestingly, many open source companies
offer extensive warranties for their products. For copyright infringements,
warranties sound justified, since source code rewriting is common.**® Also
license infringement seems unlikely since these companies should have
better knowledge of open source licensing. But for third party patents, in-
fringement risk is harder to manage.

According to a recent EU commissioned study, patent infringement in-
surance has become a viable patent defense option to European small and
medium size companies. The availability and terms of such insurances
vary however greatly country by country and in practice they may not
cover litigation in the United States, where the coverage would be most
relevant. The patent infringement insurance market within the United
States is even less developed.*”

Red Hat was the first open source company to publicly announce it files
for defensive patents in 2002.*®® One lesson from the patenting arms race is
that it takes years to build a credible patent portfolio by filing patents. The
first patent was granted to Red Hat in 2004, four years after its actual filing
date. Also, using the patents is relatively more costly to small companies
as they are targets of patent lawsuits more often than enterprises having
large patent portfolios.*”” Not surprisingly, many open source companies

oppose patents strongly at the policy level.*"’

%5 See IBM (2005), SUN (2005) and Computer Business Review (2005). To be precise, SUN’s
pledge is limited only to the users of their own (incompatible) open source license while IBM’s
E)ledge covers all open source licenses accepted by the Open Source Initiative.

¢ Valimaki (2003b).

47 CJA Consultants (2003).

18 Red Hat (2004b).

*Lanjouw and Schankermann (2004).

10 E.g. Farber (2003)

DEFENSE WITH OPEN SOURCE e 178

Community Projects. The best option to community projects seems to
be to keep liability disclaimers intact and avoid patented and proprietary
technology with reasonable means. As a practical measure, for instance,
the Linux development process was recently modified to better document
the origin of the source code and any subsequent changes to it. The aim is
to avoid legal uncertainties in advance. Now all Linux developers must
click through a statement saying that to their best knowledge the new
source code is home made, not copied from anyone, and that its distribu-
tion in Linux is allowed with GNU GPL.*"" - It is worth noting that this
“assurance” does not carry any kind of legal effect though.

Open source and free software activists have been circulating the idea of
creating a patent pool for GPL-software for some time now. For example,
Richard Stallman has been supportive for the idea, but so far Free Software
Foundation has not made any formal steps to create a “GNU-patent
p o 01// .412

Open source community developers also campaign visibly against stricter
intellectual property legislation. Many developers have warned that software
patents and increasing proprietary control threat the functionality of the
open source model. — We continue from this in the next section.

6.1.5 Concluding Remarks

The use of extensive license disclaimers is still the standard among open
source developers. However, we found that both IT enterprises and open
source companies have started to sell liability warranties to their users.
The growing warranty business proves that more research on risk man-
agement would be relevant to both developers and business managers.

The insurance alternative is still in large part an untouched ground.
Open source companies are only slightly but perhaps increasingly inter-
ested in defensive insurance plans. The biggest challenge may however be
non-commercial community projects, which are currently not able to gain
directly from expensive insurances.

“1OSDL (2004).
2 Kelly (2000).

DEFENSE WITH OPEN SOURCE e 179

The defense options to patent infringements should be studied further.
It is clear that IT enterprises have collected large patent portfolios consist-
ing of typically thousands of patents during the last ten years. They have
publicly announced to use them only defensively towards open source.
Also open source companies are investigating defensive patenting possi-
bility. While a mutual defense policy seems to be accepted by almost all
companies, we did not found evidence of concrete IPR defense alliances in
open source development. Perhaps patent pools have been an overlooked
option. If pools would be constructed taking into board all parties, includ-
ing non-commercial open source developers, they would surely lower the
social costs of patent infringement risks.

Also the relevance of patents in open source needs further empirical
study. For example the so-called intellectual capital management literature
stresses the role of patents especially as a source of licensing revenue and
gaining access to the innovations of others.*”’ Instead, it seems more
proper to analyze patents in open source development rather as risks than
opportunities although we also noted that the costs of patent risks may not
be as high as commonly assumed.

To summarize, in addition to liability allocation inter partes, third party
insurance, and patenting, the risk management game in open source de-
velopment includes careful risk avoidance and even political influence on
the development of intellectual property laws. Like Calabresi noted in his
analysis of accidents, it is plausible to assume that an optimal IPR risk
management strategy for each type of organization is a mix of available al-

ternatives.
6.2 Patenting Problem and Possible Policy Solutions*'*

6.2.1 Background

One could argue that open source forms perhaps the fastest growing
and most innovative sector of the software industry today. However,
many individual software developers and small companies have warned

B3 See e.g. Teece (2000) and Glazer (1998).
4 This part was originally published in Véliméki (2004b).

DEFENSE WITH OPEN SOURCE e 180

that software patents — originally aimed at promoting innovation — threat
the functionality of the open source model.*” Recent political campaigning
around the EU’s software patent directive proposal has increased fears
that distributed open development is particularly vulnerable to patents.*'
Well-known open source developers including Linus Torvalds have ex-
pressed critical public opinions on software patents in general and the di-
rective proposal in particular.*” The critique has been mainly centered on
economic arguments: extensive software patents may threat software in-
novation.*'®

Now we review several suggestions to solve the patenting problem with
open source development. These include patent pools for open source de-
velopers, aligning development more closely with the patenting process,
solving the problem of trivial patents and introducing new liability excep-
tions to the patent law.

We conclude by arguing that in the case patents and open source devel-
opment have conflicts, the legal system should be improved in the first
place. It would not be desirable to require open source development as a
methodology to adopt abstract rules of law that may not be in par with the
software development reality. Therefore the liability exception policy
might offer the best outcome for all.

6.2.2 Open Source Licenses and Infringement Risk

Let’s start from looking at the patenting problem from open source licens-
ing perspective. As noted in the previous chapter, many open source li-
censes including GNU GPL, CPL, LGPL, MPL and Apache have a built-in

5 Warnings have a long history in developer communities: there has been campaigning
against software patentability since the early 1990s. See e.g. The League for Programming
Freedom (1991).

16 See Software Patent Directive Proposal (2002). Most active critique has been arranged by
Foundation for a Free Information Infrastructure, a group run by Hartmut Pilch. See
http:/ /www. ffii.org/.

17 For example Linux developers Linus Torvalds and Alan Cox sent an open letter to the Euro-
pean Parliament in the fall 2003 expressing their deep concerns. See Torvalds and Cox (2003).

'8 Political debate at EU level on software innovation is not new either. Lobbying on the Soft-
ware Copyright Directive, centered on the questions of whether reverse engineering and copy-
right over interfaces would threat software development and innovation. See Band and Katoh
(1995) and section 4.1.3 above. What is new in the patenting debate, however, is the strong role
of individual developers and activists.

DEFENSE WITH OPEN SOURCE e 181

termination mechanism that does not allow the development of software
that requires any kind of license payments for third party patents. Of
course, not all open source licenses have such patent clauses. For instance
the popular BSD license lacks one. However, as we noted, patent termina-
tion clauses are becoming more and more common. Whatever one may
think of the practicality of them, it seems clear that open source develop-
ment becomes problematic indeed if there are many existing software pat-
ents around.

We have also noted that the biggest challenge with software patents is
that the infringement risk is difficult to measure and manage ex ante. It is
true that statistically patent infringement cases are rare, many patents are
held invalid and that a mere infringement claim does not yet trigger the
termination clause for instance in GNU GPL.*” In practice, however, an
open source project faced with a patent infringement claim from a credible
corporation may have to terminate just because it would be too costly and
time-consuming to find out what the real risk is. In addition to developers
also open source users face the infringement risk. Open source licenses do
not help since they typically spread the risk from any intellectual property
rights infringement to the user.

So what are the practical options to react when a patent infringement
claim arrives? First, the use of the invention can be stopped. Second, the
patent can be analyzed and determined whether either a license should be
negotiated or a new implementation around the patent written. While le-
gally perhaps the safest option, writing a new implementation takes re-
sources and some extra motivation might be needed to “invent the wheel”
again. Licensing has its problems too: the patent license should be practi-
cally free-of-charge because of the terms of open source licenses (such as
GPL clause 7 noted above) and because most individual developers and
non-commercial projects couldn’t afford any fees in the first place. Now
how many patent-owners would be ready for that? Finally, it is difficult to
argue why anyone should buy a license to an invention, which he cannot
in many cases even utilize (there is no source code in patents).

9 For example Rosen (2004) has stressed that because of these reasons open source developers
should not be too worried about patents.

DEFENSE WITH OPEN SOURCE e 182
6.2.3 Development Process from Patenting Perspective

From development perspective, open source and free software are am-
biguous concepts. There are both commercial and non-commercial open
source development projects. Some projects are coordinated by a legal en-
tity, some by informal groups of developers.**

Common to all open source development is the transparency and in-
cremental nature of all development. This means that:

- All source code - including potential software inventions - is
public and commented from the beginning; there are no periods of
secrecy and neither is patent data searched before publishing

- Development is distributed in a sense that the number of contribu-
tors is in principle unlimited and their identity may be anony-
mous

- Development is incremental meaning that typically contributions
only cover a specific part or function of the program. A project
may be abandoned by the initial developers and later continued
by others.

There may be both individuals and organizations participating in the
development process. The hierarchy and organization of the development
process may not be visible to outside. A typical open source project does
not require high resources to be technically efficient. Also, a successful
project may gain high visibility and large user base without significant
commercial marketing efforts.

From the short description above, we can find numerous reasons why
the patent system does not fit open source development process at all.
Most important problems have been said to be:

- Because of open source code patent infringements are relatively
easy to detect and prove

#0 A good overview of open source development process is presented in e.g. Feller and Fitz-
gerald (2002).

DEFENSE WITH OPEN SOURCE e 183

- Low resources do not allow patent search and legal defense in the
event of infringement claims based on trivial patents

- Especially free software ethics and philosophy are strongly
against the use of patents of any kind in software development

- Source publication on the Internet may be interpreted to happen
in all jurisdictions and hence infringe potential patents anywhere

- Proprietary software developers may compete against open
source developers with patent infringement claims; if their pat-
ents are held valid and open source developers would require to
obtain licenses, there is no guarantee on the terms of these private
license agreements between open source development commu-
nity and commercial software company

It should be stressed that open source development has so far worked
fine and produced new innovations without anyone applying or licensing
patents. It is not in the scope of this book to study whether the patent sys-
tem works efficiently with software development in general. It should be
clear, however, that the potential setbacks to open source software devel-
opment caused by an inefficient and malfunctioning patent system are far
greater than they would be to other areas of innovative activity.

6.2.4 Policy Debate on Open Source and Patents

As noted, critical policy debate on software patents has been active for
years.””’ The opponents of software patents — mainly individual open
source developers, activists with various backgrounds, and small compa-
nies — have gained high visibility with comparably lower resource to pro-
patenting advocates. The debate is currently most relevant in the EU
where several consultation and research reports have been published on
the issue.*”? Suggested solutions in the recent studies and reports have var-
ied from:

#1Gee e.g. Nichols (1998), p. 103-
2 See e.g, Bakels (2002); Blind et al (2001); PbT Consultants (2001); and Hart et al (2000).

DEFENSE WITH OPEN SOURCE e 184

- Solving the problem of trivial patents (Bakels)

- Founding a patent pool for the open source community (Pbt Con-
sultants)

- Adjusting the development method to include patentable research
(Nichols)

- Special liability exceptions to open source developers (Blind et al)

Let’s discuss each of these proposals in turn from open source develop-
ers’ perspective. First, solving the problem of trivial patents may not help
at all. While much of open source code may be classified generic there are
major projects, which produce new state of the art (operating systems, da-
tabases). Also proponents must quite optimistically assume that patent
system works efficiently in software development and, if it does not, it can
be easily fixed. However, as already noted in this study, it is unclear
whether patents promote innovation in the software industry in the first
place. Rather the patent system may benefit the marketing, financing, liti-
gation and global business strategy of large companies.*”

Any suggestions that open source developers should use the patent sys-
tem have more fundamental problems. First, many open source licenses
give patents no value: they essentially require all patents relating to open
source software to be licensed to anyone free of charge. It is practically im-
possible to change such a well-laid principle in all licenses whose rationale
may be strongly ethical.*** Second, though more theoretically, a large pat-
ent pool with restricted admission to “open-source-only” participants
could be held violating the competition law. For a patent pool in open
source world to be functional, it should accept as its members companies,
individuals and even anonymous developers as well as both free and pro-
prietary software developers.

Next, while adjusting software development to the model assumed by
patent law may function in large companies it can hardly fit the informal
and distributed nature of open source development model. It should be

3 See Chapter 3 and e.g. Bessen and Hunt (2003) and David et al (2003).
424 Gee also Stallman (1999b).

DEFENSE WITH OPEN SOURCE e 185

also noted that even large companies depend on external help with pat-
ents.*?

Finally, Blind et al. propose that in the future it should be considered
whether non-commercial use of open source software should be exempted
from patent claims — even if it takes place within commercial environment.
This approach has its obvious advantages. First of all, it would be a com-
monly accepted social policy. Second, and perhaps more importantly,
open source development as a methodology would not need to adapt to
the abstract rules of law, which may be far from the software development
reality. Instead, laws would be adapted according to an alternative devel-

opment method.

6.2.5 Liability Exceptions for Open Source?

Let’s think in practical terms for a moment. Individual developers and
small companies have good arguments that the open source development
model suffers from software patents. Their argument has its roots much
deeper than the current public debate over the proposed directive. Their
argument does not stop with the directive.

Since open source forms an essential and growing part of the software
industry today, it is in the interest of all participants, big IT enterprises
alike, to find a solution to the worries of patent opponents. Arguing that
the patent system will work in the future and increase innovation in the
software industry is not an answer to their problem. The question is about
open source development and licensing model, which is in conflict with
the software development and licensing model assumed by patents.

What realistic proposals do we have for those affected by patents? From
social policy perspective, writing new exceptions in a new law seems like
the best possible answer. Unfortunately the political debate in the EU has
been going forward and backwards without clear answer to those worried
about open source. Currently, the exception approach is at risk.**

45 Blind et al (2001).

¢ Initially, the commission proposal didn’t include too many exceptions for open source. EU
parliament changed the tone by voting for numerous exceptions to the directive proposal in the
fall 2003. In spring 2004, Ireland’s new “compromise proposal” revised most of these changes
out. As of late 2004, the debate goes on.

DEFENSE WITH OPEN SOURCE e 186

Finally, a quick speculation is in place. What would happen if the excep-
tion approach would win in the end? Quite interestingly, Blind et al go on
to note that if a liability exception to open source is sought then also the
TRIPS agreement would need similar revisions. Here, one may compare
the position of open source advocates to those of developing countries.
Both have general intellectual property (software code and indigenous cul-
tural knowledge), which multinational corporations try to claim as their
private property. The difference is that open source advocates work
mainly in the developed world and their relative economic and political
power may be far greater than those of the third world developing coun-
tries. In fact, open source advocates have already become a somewhat se-
rious player in the fight for the ownership of the knowledge economy.*”’

6.3 Conclusion: IPR Laws Can Be Tuned

What could be done better to minimize the social costs of IPR infringe-
ment risk for open source in the future? From a company perspective, the
insurance option is worth considering. The annual price of the insurance
reflects the actual price of software patents. Also other IPR risk manage-
ment techniques can be developed further from the level of source code in-
tegrity up until political activity.

From society’s perspective, the picture is more blurred. Regarding pat-
ents, optimists such as Jaffe and Lerner argue that the obvious problems
can be solved by improving patent quality and decreasing incentives for
harmful patent suits. One can also take a more skeptical position if one
does not buy the argument that the patenting system works for software
innovations in the first place. A more radical solution would be to alter the
property rules under patent law. First step would be to include exceptions
in the coverage of the patent law.

In the long term, one can further argue, the liability rules in intellectual
property rights legislation could be revised. The mere existence of socially
undesirable accidents, as we have called them, is based on the strict liability
rule for infringements defined in intellectual property laws. One could

47 For a recent overview of the issues, see Drahos and Braithwaite (2002).

DEFENSE WITH OPEN SOURCE e 187

think of the introduction of negligence standard for situations where the
developers can’t realistically know whether their software violates third
party intellectual property rights. In fact, such a reform wouldn’t be a radi-
cal department from the current law. For example, during the national
implementation of European Union Copyright Directive in Finland it was
stated that anyone who downloads copyrighted works from the Internet is
not liable if he didn’t know — based on negligence standard — the material
is infringing.**®

428 Gee Memorandum of the Constitutional Law Committee of the Finnish Parliament (2005).

OFFENSE WITH OPEN SOURCE e 188

7 OFFENSE WITH OPEN SOURCE: CASE STUDIES ON
LICENSING

This chapter studies how open source licenses have been used offen-
sively as a part of market-changing business strategy. First case study is
about operating system software markets and how open source alterna-
tives have changed the existing market structure during the recent years.
The second one describes a specific open source licensing model called
dual licensing and discusses how several start-up companies have bene-
fited from using it.

7.1 Licensing Open Source for Profit

7.1.1 Product Pricing Possibilities

Open source limits the possibilities of software pricing but does not
make it completely impossible. Of course, already discussed indirect
means to price copyrighted works are possible.*” Indirect pricing is espe-
cially suitable for software service businesses. Direct licensing to many us-
ers with open source is usually not feasible taking into account the “no
royalty” requirement of Open Source Definition. However, with some
imagination, at least the following direct pricing options are possible:

1. First sale. A license becomes applicable only after a first copy of the
program is distributed. Thus, it is possible to charge price for the
first distribution. This pricing model is applied for example in cus-
tomized software projects.

2. Renting over a network. Since open source licenses apply only to soft-
ware distributions and not to software use per se, any modified open
source software that can be used over a network can be kept secret

and in-house. This pricing model could be applied to software that

42 Gee section 3.2.5.

OFFENSE WITH OPEN SOURCE e 189

can be used over the Internet, such as search engines and online
marketplaces.*’

3. Dual licensing. For the copyright holder, it is possible to release the
same software package with different license terms. Those users who
may not want to be bind by an open source license, can then pur-
chase another (proprietary) license. This option is attractive to espe-
cially embedded software products with commercial applications.
Adding new proprietary features to an open source base product is
also close to this pricing model.

In addition to copyright, direct pricing based on other intellectual prop-
erty rights may be possible. Both trademark and patent licensing may be
available although it must be kept in mind that at the same time fulfilling
the requirements of free copying and distribution substantially limits the
possibility to effectively use them. In practice, for example trademark may
be more valuable as supporting indirect licensing models and preventing
forking to some extent.*”!

7.1.2 Problem of Development Control

Open source poses also challenges to the coordination of software de-
velopment, which is typically a necessary prerequisite for direct pricing.
Specifically, development can’t be coordinated with the means of copy-
right or secret source code. Instead, alternative means to appropriate soft-
ware innovation come into play. Development control requires strong
technical project lead with open opportunity for skilled programmers to
participate. It is always possible for a project to separate into different
paths if some developers or users are unhappy with e.g. the technical di-
rection, project management or even licensing issues of a particular pro-

ject. 2

0 Although some recent open source licenses explicitly try to disallow the use of this model.

431 Rosen (2001).

#2 One recent example was when Xfree86 project on a free software implementation of the X
windowing system - key component in Unix-based operating systems including Linux —
changed its licensing policy towards more restricted in early 2004. It didn’t take long for a new
fork X.org to take the development lead. See Wheeler (2004).

OFFENSE WITH OPEN SOURCE e 190

In practice, many developers consider it central to the idea of open
source that licenses allow the development of competing products (forks)
although it is considered an ultimate response to a development lock-up.**
Also for companies operating in typical open source environments such as
the Internet infrastructure, the avoidance of forking may be crucial for sus-
tainable business.

An example is SSH Communications Security Corp, a Finnish
start-up, which was listed in 2000 at the end of the dot-com boom at
the Helsinki Stock Exchange with quick growth history. The history
of SSH goes back to the early 1990s when Tatu Ylonen developed a
secure shell protocol, named SSH, which eventually became a de facto
Internet standard.** The license terms of the first SSH were essen-
tially open source stating: “As far as I am concerned, the code I have
written for this software can be used freely for any purpose.” In
1995, Yl6nen founded a company for the commercialization of SSH
and changed its license terms to proprietary. He never again released
a new SSH version under an open source license.

Later, as the demand for SSH kept on growing, an open source
fork emerged. While SSH Communication Security Corp did have
more liberal license terms for non-commercial users (such as univer-
sities) it wasn’t enough for those free software enthusiasts who
wanted to embed SSH into their projects without any royalty or
other intellectual property concerns. OpenBSD project located the
early source codes with the liberal license terms and eventually re-
leased a fork called OpenSSH in late 1999.*°

The project rewrote all parts of SSH, which had third party licens-
ing issues or potentially violated software patents and cryptographic

3 For example Raymond (2001) explains that “Splits in major projects have been rare, and al-
ways accompanied by re-labeling and a large volume of public self-justification. It is clear that,
in such cases ... the splitters felt they were going against a fairly powerful community norm.”
4 SSH was also standardized through IETF.

5 The project website informs us that: “OpenSSH is a derivative of the original free ssh 1.2.12
release from Tatu Ylonen. This version was the last one which was free enough for reuse by our
project”.

OFFENSE WITH OPEN SOURCE e 191

export control laws.** OpenSSH concludes the history page in a re-
vealing statement: “SSH. Completely free at last.” It took around a
year for OpenSSH to get more popular. In the beginning of 2001,
SSH Communication Security Corp threatened to initiate a trade-
mark dispute against the project to change its name.*’

Now there is both a commercial and open source version of SSH
available. However, SSH Communication Security Corp does not
control the development of the free version, which has by now sur-
passed the commercialized original in popularity. The commercial
version has experienced a sharp loss in market share:

SSH implementations in percent

ep-2000 Apr-2001 Nov-2001 May-2002 Dec-2002 Jun-2003 Jan-2004 Jul-20i
Date

Figure 19. SSH usage on Internet servers.438

6 Original SSH license mentioned two software patents (called RSA and IDEA).

%7 See OpenSSH (2001). Ylénen also made a somewhat misguided comment: “While free soft-
ware is often good, it is usually not acceptable in the commercial world for critical systems
(and T don't think that is going to change for many years).” The community response to Ylénen
and his company was — unsurprisingly — negative.

38 See ScanSSH (2004) for continuously updated SSH usage statistics. It remains a speculation
for the reader to consider what would have happened if the company had decided to continue
to support the development of an open source version from the beginning and never let a fork
to emerge.

OFFENSE WITH OPEN SOURCE e 192
7.2 Case Study 1: Free Licenses and Operating System Software**

The first case study describes the impact of different open source copy-
right licensing arrangements to the competition in microcomputer operat-
ing system markets. We compare the licensing policies of Microsoft Win-
dows, Apple Os X and GNU/Linux operating systems. We argue that
open source and free software have been the most important changing fac-
tors in the microcomputer operating system markets in the recent years:
they has brought new entrants to relatively closed markets and changed
the business model of incumbents. However, there has been no single
open source strategy but merely all market players have adopted open
source into their platform strategy in one form or other.

7.2.1 Introduction

Operating system software separated as a product from hardware in the
1970s. First popular interoperable operating systems were Unix systems
started at AT&T in 1971. However, in the 1970s and 1980s Unix systems
were not offered for microcomputers. First microcomputers in the late
1970s carried their own proprietary systems.*

In the early 1980s, there were basically two types on operating system
markets on microcomputers: those controlled by hardware manufacturer
such as Apple, Commodore and Atari, and new uncontrolled markets
based on PC hardware standard. Open hardware on PC meant that there
was in principle no single manufacturer control on operating system soft-
ware. Soon, however, de facto operating system standard on PC hardware
became Microsoft, first with Microsoft Disk Operating System (MS-DOS)
and later with Microsoft Windows.

With computing evolving into new directions, Microsoft’s operating sys-
tem monopoly on PC hardware became challenged from time to time with
the introduction of e.g. graphical user interfaces and networking features.
But Microsoft resisted.

* This case study is based on Viliméki and Oksanen (2005).
#0 Campbell-Kelly (2003)

OFFENSE WITH OPEN SOURCE e 193

In the late 1990s, Unix compatible systems were finally offered for PCs.
Linux and different Berkeley Software Distribution (BSD) variants com-
bined with GNU system software started to gain popularity on cheap PC
hardware and Internet servers. According to West and Dedrick, this new
major trend towards open source was influenced by a need for cheap and
free Unix implementations, the rise of different philosophy towards soft-
ware ownership, and the rise of Internet as a new development and mar-
keting platform.**' Also proprietary mainframe and workstation Unixes
were scaled down to run on cheaper hardware.

In the early 2000s, the operating system competition on the marketplace
is again different. Microsoft Windows is still on the lead but competing
especially on desktop markets with the new Apple OS X based on open
source Unix compatible kernel. On server markets, new competition comes
from a variation of highly developed free Unix implementations
(GNU/Linux in the lead and different variants of BSD also available).
Market leader Microsoft has been challenged on both fronts by either fully
or partly open source software products.

This case study proceeds as follows. First we shortly overview the oper-
ating system markets on microcomputers as they stand today. Then, we
discuss the historical development of different operating system licensing
models and their implications to business model possibilities of Microsoft
Windows, Apple OS X and GNU/Linux.** We show that there has been
no single open source strategy but merely all market players have adopted
open source into their operating system strategy in one form or other. Fi-
nally, we conclude the study arguing that free software and open source
components have had a major impact on the microcomputer operating
system markets in the recent years.

4“1 West and Dedrick (2001)

#2 To simplify the analysis, proprietary Unixes such as Sun Solaris, HP/UIX and IBM/AIX as
well as fully open source BSD Unixes such as Free BSD were omitted. — Sun could have been
worth a separate case study, however, as they announced in the midst of market pressures to
release Solaris as open source in early 2005.

OFFENSE WITH OPEN SOURCE e 194

7.2.2 Market Overview

The table below illustrates main operating system options available in
the early 2000s.

Windows 0S X GNU/Linux
Provider Microsoft Apple Many vendors
License(s) Proprietary Proprietary / Free GPL
Market share 95-98 % 1-3% 0.2-0.4%
Main income Licenses Hardware, licenses Support, services
Development Inhouse Inhouse / open source Open source / community
Standards Proprietary / open Proprietary / open Open
Processor One option (x86) One option (PowerPC) Various
Environment = Desktop, server Desktop, server Server, desktop
Other hardware Open Proprietary Open

Table 12. Microcomputer operating system competition in the early 2000s.

A few notes of the table are in place. First, market share estimates need
certain reservations. They are based on desktop use and indicate only op-
erating system popularity on desktop computers. They are a poor indica-
tor of the overall operating system market size and value consisting of
both desktops and servers.**

Second, there is no single source of revenues. Microsoft can be perhaps
best described as a traditional software company in the sense their main
income comes from license sales. Apple, on their part, still builds on the
hardware controlled operating system model: OS X runs only on Apple
hardware and in order to run OS X, one needs to first buy an Apple com-
puter. Finally, GNU/Linux systems are typically not sold separately at all
but rather installed as part of larger computer investment. Revenues are

generated indirectly from e.g. services and support.***

*3 For the sources of these figures, see section 2.1.3.
#4 Raymond (2001).

OFFENSE WITH OPEN SOURCE e 195

7.2.3 Study Framework

In order to understand more profoundly the impact of open source and
free software licensing on operating systems competition, the licensing
models of the three major operating systems were analyzed in more detail.
The study was made by first collecting operating system market informa-
tion from trade literature, vendor websites and expert interviews available
on the Internet. Then, this information was analyzed through relevant
economic theory. The presentation of each operating system is divided in
three parts: historical background, licensing model, and impact on compe-
tition.

The first question is the licensing and implied ownership structure of
the operating system software. Three main options used are proprietary
(one owns), reciprocal (no one owns) and permissive licensing (everyone
owns). GNU GPL is a typical reciprocal license while BSD and Apple Pub-
lic Source License are more permissive. An overview of licensing options
used at the different level of the system is illustrated in the table 13 below.
These licensing options and their implications are explained later in detail
with each operating system.

Proprietary Permissive Reciprocal
Kernel Microsoft Apple Linux
User interface Microsoft, Apple Linux
Applications All All All

Table 13. Main licensing options in different logical levels of the operating system.

Second, we discuss different business model alternatives. Possibilities
for operating system vendors to benefit from components strategy include
bundled proprietary software such as user interface, hardware and operat-
ing system integration. It is also possible to get involved in the complimen-
tary products and services markets including participation in open source
communities. We assume business model possibilities depend on e.g. the
licensing choice and whether the operating system is competing on desk-
top or server and enterprise markets.

OFFENSE WITH OPEN SOURCE e 196

Third, we discuss the competitive environment of each operating sys-
tem. How system vendors have differentiated their product from others?
What are their competitive advantages? We are especially interested how
open source licensing has affected the competitive environment and has it
been used as a competitive tool.

7.2.4 Microsoft Windows

Historical background. The first version of Microsoft Disk Operating
System (MS-DOS) was released with IBM PC back in 1981. The first ver-
sion of Microsoft Windows — at first basically a graphical user interface ex-
tension to MS-DOS — was announced in 1983 and published in 1985. From
the beginning, Microsoft’s operating system has been sold as licensed
software. It has been priced as a consumer product being roughly 5-10% of
the total price of a home PC system.**

As graphical user interfaces became standardized Microsoft had a MS-
DOS based edge on PC systems. Its many competitors including IBM’s
0S/2, Digital Research’s Graphical Environment Manager (GEM), Ber-
keley Softworks” GeoWorks (GEOS) disappeared by the 1990s. While the
competitors were perhaps technologically more advanced at the time
compared to Windows they were more or less incompatible with MS-DOS
programs. IBM’s OS/2 offered the toughest competition. It was in the
beginning supported by Microsoft but it never gained enough popularity
to attract application developers, which were already developing for the
growing Windows markets.

Licensing model and open source. Microsoft’s licensing model has de-
veloped during time. From the beginning, Microsoft has been the driving
force of mass-market software licensing. The company has lead the intro-
duction of cheap and relatively simple end-user licenses to business soft-
ware. Later on, the company has developed pricing strategies and price
discrimination. Their licenses are tied to e.g. software itself (number of
copies), user groups (students, home users) or hardware (OEM sales).

5 See Computer Hope (2003) for historical Windows licensing prices.

OFFENSE WITH OPEN SOURCE e 197

With the increasing commoditization of software Microsoft has bundled
other office, Internet and multimedia application to its operating system.
From economic perspective, Microsoft has been a text-book example of
how to use network effects to benefit from increasing returns and create a
strong vendor lock-in.** No wonder, antitrust officials have followed
closely on Microsoft’s licensing and bundling practices and the company
has been the target of several unsuccessful suits.**

Recently, the company has changed its enterprise licensing model effec-
tively from non-perpetual licenses to annual renewal fees. This “Microsoft
Software Assurance” introduced three-year licensing cycles. Critics
claimed that the company uses their lock-in power to force the users to
upgrade their systems more often than really needed.**®

In addition, Microsoft has to some degree opened Windows source code
to its customers. Bigger customers and especially governments are hesitant
to use products, whose source code they cannot inspect for security bugs
and possible backdoors. Therefore, Microsoft introduced “Shared Source
Initiative”, which opened the Windows source code for inspections under
strict non-disclosure agreements. Unlike in normal open source, the users
were not allowed to make any changes to the source code or use it in their
own products.**

Microsoft has subsequently gradually relaxed the licensing terms of at
least part of its products. For example, the Shared Source License for Mi-
crosoft ASP.NET Starter Kit would almost pass the open source definition
— the users are allowed to create derivate works and distribute them as
long as they keep the original license agreement intact. A significant re-
striction, however, is that the users are not allowed the mix the source
code with other code under a reciprocal open source license:**

46 Cf. Liebowitz and Margolis (2001) who criticize the blind application of network economics
in the support of Microsoft antitrust claims.

#7 Quite describingly, the US Department of Justice maintains a webpage title “US v. Microsoft
— the current case” [emphasis added]. See US vs. Microsoft (2003)

8 See Microsoft (2003c) for details. The original deadline for signing up for the program had to
be extended because of the criticism. See ComputerWire (2002).

49 Microsoft (2003b).

0 ibid.

OFFENSE WITH OPEN SOURCE e 198

“That you are not allowed to combine or distribute the Software
with other software that is licensed under terms that seek to require
that the Software (or any intellectual property in it) be provided in
source code form, licensed to others to allow the creation or distribu-
tion of derivative works, or distributed without charge.”

Overall, Microsoft’s position on open source has changed considerably.
Currently the company’s position on open source is still somewhat critical

and dismissive but not totally hostile:*'

“...The main benefit of the OSS model is that it allows any pro-
grammer to advance the ideas of the original developer, and global
“communities” of programmers do emerge to contribute to major
OSS projects. Another obvious benefit is that there is little or no cost
in obtaining OSS software, although training, service, and support
costs may be higher over the life of the software. The principal
drawback of OSS is that no single entity can be held responsible for
individual contributions of a far-flung army of unrelated program-
mers. There also is the possibility that one version of an OSS pro-
gram will not work properly, or at all, with other versions. In addi-
tion, it is not clear that the OSS model can sustain software compa-
nies over the long term.”

However, Microsoft still makes a strict difference between GNU GPL
and other open source licenses. The company has used considerable re-
sources to lobby against the use of GNU GPL in governments and publicly
funded research arguing that GPL threats the ”software ecosystem”.** As
long as open source supports and complements Microsoft’s product busi-
ness and does not threaten the licensing business of its core intellectual
property, this seems to be a rational policy in accordance with economic
theory.

1 ibid.
42 Gee section 2.4.5 and Microsoft (2003a).

OFFENSE WITH OPEN SOURCE e 199

Impact on competition. Because of its current dominant market position
(especially on desktop), it is reasonable to assume that Microsoft can only
lose market share. Thus its competitive moves on operating system mar-
kets are more or less defensive. For example, the adoption of limited
shared source programs is clearly aimed to undermine the threat pre-
sented by open source.

Microsoft has also used other strategies. The infamous “Halloween
document” — a leaked Microsoft’s internal memo on open source — draws
an interesting (though painted) picture of their options.*® First, Microsoft
can use its market power to divert standards to include proprietary com-
ponents. This behavior is sometimes called as “extend and embrace”. One
well-documented example of this strategy is Kerberos-protocol, to which
Microsoft made subtle changes to prevent Unix-servers to interoperate
with Windows-clients.** Of course, this strategy assumes that Microsoft
currently controls some essential operating system component that can be
changed without notifying competitors.

Second possible strategy is aggressive use of intellectual property rights
and especially software patents. However, it is worth noting that compa-
nies with large patent portfolios including IBM, which has the biggest pat-
ent portfolio of all, have now major business interest in GNU/Linux. They
could and most likely would counter any move from Microsoft against
GNU/Linux with similar or bigger charge of patent violations. And as
noted in the previous chapter, some of the biggest companies — IBM in-
cluding — have already pledged some of their patents to open source de-
velopers.

Microsoft’s has also invested in trusted computing.*® Trusted comput-
ing protects files with hardware authentication thus making it in principle
possible to control what the users install on their systems. As noted earlier

3 It must be noted that the Halloween document was circulated by open source enthusiasts
with considerably critical views on Microsoft.

#* Livingston (2000).

455 The company uses currently term Trustworthy Computing. At the other extreme of the nam-
ing game, Free Software Foundation prefers term Treacherous Computing.

OFFENSE WITH OPEN SOURCE e 200

in this book, trusted computing is a potential threat to open source devel-
opers although so far none of the alleged risks have realized.**

In fact, even though Microsoft could theoretically act against open
source in many ways, any such move could end up being counter-
beneficial. The users do not want to lock themselves up to one vendor if
there is an alternative. As open source product get more support from the
industry, it is practically impossible for one company to try to block open
source from the markets. Thus, Microsoft has been slowly turning from a

critical bystander to cautious participant.*”

7.2.5 Apple OS X

Historical background. Apple Macintosh had a strong position in mi-
crocomputer markets in the 1980s. However, in the 1990s company run
into troubles and much was due to its ancient operating system technol-
ogy. After reviewing the possibilities, Apple acquired NeXT, a company
headed by Apple’s co-founder Steve Jobs. A completely new operating
system called Mac OS X was developed with Jobs’ lead in the late 1990s.*®

In short, Apple OS X can be described as a further developed version of
NeXT’s NeXTStep operating system with new graphical user interface and
compatibility with old Mac software. OS X's kernel and other important
parts — following NeXTStep’s design — are largely based on BSD Unix and
are open source. BSD itself has never been that popular operating system
but its legacy lives on. In 1993, BSD was ported to cheap Intel hardware by
William Jolitz and later three separate projects — FreeBSD, NetBSD and
OpenBSD — were founded to continue BSD development. However, Ap-
ple’s Mac OS X is by all accounts the first popular BSD implementation for
microcomputers.*”’

Licensing model and open source. The user interface and many other
system tools related to OS X technology are proprietary. Thus, the whole

#6See section 4.4.4 above.

*7 Microsoft published its first two open source projects (not related to Shared Source) in 2004.
See Jo Foley (2004).

48 West (2003).

49 See Howard (2001) and Hubbard (2003).

OFFENSE WITH OPEN SOURCE e 201

OS X operating system package is licensed much the same way as Micro-
soft Windows. There are no licensing requirements for applications run-
ning on Mac OS X. A traditional Mac software culture has perhaps favored
proprietary licensing such as shareware for hobbyist programs. However,
OS X has provided access to the system for many GNU/Linux open source
programmers.

Because of the BSD license Apple has been able to also re-license every-
thing in Mac OS X kernel with its own terms. The kernel, called Darwin,
uses Apple Public Source License, which is accepted as free software li-
cense by the Free Software Foundation. Their approach has been to keep
the source code of the kernel open and have good contacts with the open
source community. For example, Apple has hired key developers includ-
ing Jordan Hubbard, who is one FreeBSD founders and was a long time a
core member of the development group. At the moment, Apple says it
uses FreeBSD as a reference operating system. Apple also makes its modi-
fications publicly available for the community even if there is no such li-
cense requirement. According to Darwin FAQ, the reason is:**

“Although the BSD licenses don't require companies to post their
sources, divergent code bases are very hard to maintain. We believe
that the open source model is the most effective form of develop-
ment for certain types of software. By pooling our expertise with the
open source development community, we expect to improve the
quality, performance, and feature set of our software.”

Impact on competition. Theoretically Apple’s approach takes the best of
all possible worlds. The open sourced Darwin and good community rela-
tions allowed Apple to leverage off the large community networks around
different BSD variants. Good interoperability with Unix allowed also easy
porting from rich collections of server applications. Open source code has
helped hardware vendors to port their drivers to Apple. Also, Apple has
worked in collaboration with Microsoft and most of the proprietary Micro-
soft-controlled standards are supported in OS X (file formats, Internet ex-

40 Apple (2003).

OFFENSE WITH OPEN SOURCE e 202

tensions). Finally, and perhaps also most importantly, Apple held control
over the OS X user interface, which allowed it to differentiate the product
from the rest of the Unix variants.*"'

Unfortunately, the market realities have somewhat spoiled Apple’s ap-
proach. Even if Darwin has been ported to Intel-based hardware, without
user interface it is more or less useless. This has limited the developer base
to the core Macintosh users, which had already the hardware from Apple.
This most likely also explains why Darwin has not gained similar momen-
tum as Linux did. Itis also important to note that Apple cannot benefit di-
rectly from the Linux-development because it is not possible to attach

GPL’ed software to Darwin.

7.2.6 GNU/Linux Distributions

Historical background. The history of both GNU and Linux are by now
well known and easily available on the Internet. On the one side, we have
Richard Stallman, Free Software Foundation and the GNU GPL, first im-
plemented in 1989. On the other side we have Linus Torvalds and Linux.

Torvalds had started to develop his new operating system in 1991.
Linux was the first Unix implementation targeted for microcomputers. In
1992, Torvalds decided to license Linux under GNU GPL and subse-
quently all source code written to the Linux kernel by numerous contribu-
tors was under that license. Most system tools of Linux were taken from
GNU project and other sources including BSD. Linux itself became the
kernel of the new operating system.

Later, Free Software Foundation and Stallman have required the full op-
erating system based on main components from the GNU project to be
called GNU/Linux. While perhaps technically applicable, trade press has
so far neglected Stallman’s desire. In this thesis, however, we follow Stall-
man’s recommendation in order to emphasize difference components of an
operating system (kernel, user interface, system tools etc.).

41 West (2003).

OFFENSE WITH OPEN SOURCE e 203

Licensing model and open source. Most software in GNU/Linux dis-
tributions are under GNU GPL license. The license states that the software
must be free to copy, distribute and modify. Also, the source code must be
open and available practically free of charge. It is not allowed to use the
GNU GPL copyrighted code in derivative works (as defined in law) under
any other license but GNU GPL. The interpretation of the last mentioned
term is unfortunately quite open.

GNU/Linux includes also essential system software licensed with other
terms. Free Software Foundation has for example used other license terms
for their programming language compilers. The idea is that any new pro-
gram created in GNU/Linux — being perhaps technically speaking a de-
rivative of the compiler — is not automatically under GNU GPL. The cur-
rent interpretation of GNU GPL and derivative works means that proprie-
tary applications and system tools can be developed, run and even sold
with proprietary licenses for Linux. However, the rough rule is that it must
be possible to run any such application separately (using only dynamic
runtime-calls) from other program including the kernel.**

A major part of GNU/Linux is X11 windowing system based user inter-
faces. X11 is licensed with liberal BSD-like terms but the most popular
graphical user interfaces including KDE and Gnome are under GNU GPL.
Major problems in their development have been usability issues as well as
the lack of open source GUI code. Developing a major free software oper-
ating system component from scratch has proven to be a time consuming
project.

Impact on competition. In a way, GNU/Linux is not a ready-to-run
product. It is a set of commodity tools and components that can be used as
such and tailored for different uses. There are numerous companies dis-
tributing or otherwise using GNU/Linux under different business models
such as Red Hat and Novell for desktops and servers, and MontaVista for
embedded systems. Large software companies including IBM, Oracle and
SUN support Linux development and use it to sell their proprietary enter-

42 Free Software Foundation (2003).

OFFENSE WITH OPEN SOURCE e 204

prise application software running on Linux.*® For example, SUN states
on their website:

“Seven Sun ONE products are available on Linux today - Applica-
tion server, Directory server, Web server, Active Server Pages, Stu-
dio, Grid Engine and Message Queue - with plans to deliver more in
the near future.”

In a way, GNU/Linux works as an open network providing opportuni-
ties to companies that sell related and interoperable products or services to
the network members. Therefore, it is perhaps more appropriate not to
take the GNU/Linux as a direct competitor to Microsoft Windows or Ap-
ple Mac OS X. First, GNU/Linux distributions have a minimal market
share on desktop users. In addition, Microsoft has been hesitant to support
Linux and all kinds of interoperability problems with the dominant oper-
ating system have made consumer markets difficult. Second, on servers a
large market share is captured by enterprise application providers, which
use GNU/Linux as an independent and cheap platform for their applica-
tions. These applications can be also run on different operating system'’s
including provider’s own (e.g. IBM AIX and SUN Solaris).

7.2.7 Concluding Remarks

From historical perspective, it seems clear that open source licensing has
indeed changed the operating system software markets in the recent years.
The fact is that today the main operating system alternatives are either
fully or partly open source Unixes or Microsoft Windows. Ten years ago,
Microsoft had gained practical monopoly on microcomputer operating
systems with only Apple Macintosh barely hanging along. As of today,
both Apple and the new entrant GNU/Linux hold stronger position
largely thanks to open source development methods and the rapid growth
of Internet and networked computing.

3 See e.g. Linux at IBM (http:/ /www.ibm.com/linux/) and Linux from Sun
(http:/ / wwws.sun.com/software/linux/).

OFFENSE WITH OPEN SOURCE e 205

However, there seems to be no “one-size-fits-all” open source operating
system strategy. The open community development model guaranteed fast
growth for GNU /Linux. Anyone can download, modify, and distribute
the source code of the whole operating system free of charge. To compare,
Apple’s Mac OS X has only an open source kernel with an in-house devel-
opment model controlled by Apple. Other parts of the operating system
including the user interface are proprietary and the whole system is li-
censed for fee. Finally, Microsoft’s reply to open source has been their
much debated shared source initiative. Significant institutional users have
been granted under specific shared source agreements a limited access to
view parts of Windows source code. Microsoft basically still believes in the
fully proprietary development and licensing model.

Therefore, it may be difficult to understand how open source actually
works as a competitive tool. Much remains for further study. The little
data we have presented in this section can be perhaps summarized as fol-
lows:

- Open source code and free software have proved to be powerful
ways to standardize and stabilize new operating system technology
and compete against established market powers

- On desktop markets, their impact has been limited mainly because of
compatibility and usability issues (strong lock-in to incumbent oper-
ating system vendors)

- On server and enterprise application markets, they have had more
changing impact based on the benefits of standardized independent
technology and other technical features (weaker lock-in to incum-
bents)

- Proprietary components are still a major competitive factor and there
remains large areas in both desktops (e.g. user interface) and servers
(e.g. enterprise applications) without major open source impact from
where proprietary vendors can generate revenue

OFFENSE WITH OPEN SOURCE e 206
7.3 Case Study 2: Dual Licensing and Embedded Software*®

We noted in previous chapters that developers sometimes dual license
their projects because of license incompatibility issues. In this section, we
analyze how dual licensing can be used as a business model. The evolution
and functionality of the dual licensing model is explained through three
case studies: Sleepycat Software Inc, TrollTech AS, and MySQL AB. Each
of these companies is an open source start-up that has been able to build a
profitable business based on the licensing model. At the end of the section,
legal requirements, economic implications and practical limitations of dual
licensing are discussed.

7.3.1 How Dual Licensing Works?

Dual licensing mixes open source and proprietary business models. Du-
ality means that both the free software distribution mechanism and tradi-
tional software product business are combined. There is technically only
one core product but two licenses: one for free distribution and free use
and another for other (proprietary) uses.

Dual licensing model differs from pure free software model in several
ways. First, the development community does not have development
power to start competing products (forks). Copyright and control of the
core product development is held in one hand, the original developer. The
ability to license the product with other terms than open source requires
full ownership of all rights to the product.

Second, the users of the free license have an option to obtain a proprie-
tary license. If a software product with reciprocity obligation — as for ex-
ample term 2b) in the GNU GPL - is embedded to become a part of an-
other product then the combined product should be distributed for free. A
proprietary license may free the user from this restriction. In this way,

#* An earlier version of this case study was published in Viliméki (2003b). The author wishes
to thank Michael Olsen of Sleepycat Software Inc., Tonje Sund of TrollTech AS and Marten
Mickos of MySQL AB for kindly providing information on their companies and the partici-
pants of Free Software Business mailing list fsb@crynwr.com for fruitful email exchange dis-
cussing an earlier version of this case study.

OFFENSE WITH OPEN SOURCE e 207

third party product businesses become also possible. From the user’s per-
spective, dual licensing can be described as indiscriminating.
Figure 20 describes the dual licensing model in more detail.

Development Development
Community Partners
l© Proprietary l
License
Reciprocal License Fees
License Core Product
j ‘
Reciprocal Reseller
License 3 i | License Fees
I Proprietary
v License
Open Source Customers
Users

Q77"

Figure 20. License streams of a core product in a simplified dual licensing model.

Let’s look at the figure 1 from the bottom up. In the bottom are software
users divided into two segments. The dual licensed software (core prod-
uct) is both licensed with reciprocity obligation to first user segment titled
“open source users” and with a commercial license to another user seg-
ment titled “customers”. The arrow from open source users to customers
indicates that when the open source users extend the usage of the software
they tend to reach the limits of free use. For example reciprocity concerns,
commercial support, warranty requirement or similar reasons may attract
them to buy a commercial (proprietary) license.

Above the core product there are two developer segments. On the left is
the open source developer community, which may give bug fixes and code
contributions with copyright back to the core product developers. On the

OFFENSE WITH OPEN SOURCE e 208

right are commercial development partners which develop essential com-
ponents of the core product; they may either transfer or license (perhaps
more common) the copyright of the component to core developers.

7.3.2 Study Framework

Three open source companies using dual licensing model were selected
for detailed analysis: Sleepycat Software Inc, TrollTech AS, and MySQL
AB. These companies were selected mainly because they are the first suc-
cessful, well-known and long-term users of the dual licensing model.*
The study was made by collecting information from company websites, re-
ferring to company executive interviews available on the Internet and by
asking complementary questions directly from company executives. The
presentation of each company is divided in three parts: historical back-
ground, licensing model and model effectiveness.

The first question is how the companies ended up in a dual licensing
model. It turns out that none of the companies have started from a dual li-
censing model. The concept has evolved as time has passed and both the
Internet and open source markets (especially based on Linux) have ma-
tured. The second question is how the dual licensing model works in each
case. What licenses do the companies use and for what reasons? Here we
learn that while the companies may use different free software licenses
they all contain a strong reciprocity obligation. Finally, we consider the ef-
fectiveness of the dual licensing model in each case. How do the compa-
nies benefit from the free use of their software compared to the traditional
software publishing model? Have the companies detected a piracy prob-
lem? How do they manage the legal rights in the products they own?

5 There are many more recently started companies, which aim to benefit from the model. Also
some big company ventures experiment with the model: e.g. Sun Microsystems uses dual li-
censing when they sell Star Office — a proprietary version of Open Office.

OFFENSE WITH OPEN SOURCE e 209

Sleepycat Software Inc MySQL AB TrollTech AS
Product Embedded database SQL database GUI tools
Free license(s) Sleepycat License GPL GPL, QPL
Users Millions Approx. 4 million users Hundreds of thousands
Customers Thousands Around 0.1 % of users Thousands
Main income Licenses, services, support Licenses, brand, services Licenses
Development Inhouse Inhouse Inhouse
Marketing Direct and indirect Direct Direct and indirect
Technology Standardized (database) Standardized (SQL) Non-standard (GUI)

Table 14. Some attributes of the studied open source products.

7.3.3 Sleepycat Software Inc.

Background. Sleepycat Software Inc. develops and markets BerkeleyDB
(BDB). The product is an embedded database system that runs on multiple
platforms. The first version of BDB was written by Keith Bostic and Margo
Seltzer in 1991. It was released under BSD license as part of BSD Unix dis-
tribution from University of California at Berkeley. BDB was distributed
freely on the Internet and eventually many open source as well as proprie-
tary projects started using the product. BSD license terms allowed a wide
adoption of the product even in commercial projects with no license fees to
copyright owners.

As the product gained more commercial interest, the programmers de-
cided to found the company Sleepycat Software Inc. as the owner of the
copyright and develop the product further. The next version added techni-
cal functionality and was therefore commercially even more valuable. It
was released under Sleepycat License in 1997. From then on, BDB has been
licensed under a dual licensing model.**

Licensing model. Sleepycat’s website states on their licensing policy:*”

“The Sleepycat open source license permits you to use Berkeley
DB ... at no charge under the condition that if you use the software

466 Zimran (2001).
7 Sleepycat (2004).

OFFENSE WITH OPEN SOURCE e 210

in an application you redistribute, the complete source code for your
application must be available and freely redistributable under rea-
sonable conditions. If you do not want to release the source code for
your application, you may purchase a license from Sleepycat Soft-
ware.”

Sleepycat’s CEO Michael Olsen has described the usage of the proprie-

tary license in an interview:*®

“If a company wants to redistribute Berkeley DB as a part of a
proprietary product, they can come to Sleepycat and pay us a fee to
purchase different license terms from us. In that case, we sign a
pretty conventional license agreement permitting use and redistribu-
tion in binary form, without forcing them to ship source.”

Model effectiveness. The development of BDB is directed within the
company. All outside contributions are implemented by company devel-
opers into the core product. Obviously, the development of a complex da-
tabase engine requires understanding of the functionality of the whole.
Development of add-on features is difficult. Therefore, user feedback bene-
fits mainly in identifying bugs and proposing new features. It would be
possible to change Sleepycat License into GNU GPL but at the moment
there seems to be no immediate reason for this as the Sleepycat license has
been widely accepted in the free software community.

Most of the income of Sleepycat (around 75%) comes from license sales
and the rest from services. Sleepycat does not promote other than license
sales on their website, which is their main direct marketing channel. The
usage under free license is not monitored. If license breaches are found,
which is not very common, the users either buy a proprietary license or

stop using the product. **

8 As quoted in Zimran (2001).
49 Zimran (2001).

OFFENSE WITH OPEN SOURCE e 211

7.3.4 MySQL AB

Background. The product of MySQL AB is a relational database man-
agement system. It was first targeted at web server use but is now offered
also as a general database management system and specifically to users of
embedded databases. The development started in 1995 by Michael Wide-
nius and David Axmark and the first major release on the Internet follo-
wed in 1996.

From the start, MySQL shipped with its own license terms. (MySQL
1995) That license allowed limited free distribution and usage of the prod-
uct with a strong reciprocity obligation on Unix-based systems (including
Linux). On Windows, the license model was shareware restricting the free
use and distribution of the product. Their business model was essentially
dual licensing on Unix-based systems and proprietary on Windows.

As the Linux-based version became very popular on the Internet, the
free license was changed in 2000 into GNU GPL on all platforms. After
that, their licensing model has been solely dual licensing. The license
change limited the scope of proprietary licensing for different uses but at
the same time it attracted even more users for the product. As late as in
2001, the company MySQL AB was founded to own the copyright to the
database software with its partners.*”’

Licensing model. The product’s copyright is licensed either by GNU
GPL or a proprietary license. Products that include the GPLed version
must be licensed under GPL. MySQL’s website states their licensing policy
in the following:*"!

“If your software is licensed under either the GPL-compatible Free
Software License as defined by the Free Software Foundation or ap-
proved by OSI, then use our GPL licensed version. If you distribute a
proprietary application in any way, and you are not licensing and
distributing your source code under GPL, you need to purchase a

470 Greant (2002).
1 MySQL (2004a).

OFFENSE WITH OPEN SOURCE e 212

commercial license of MySQL. If you are unsure, we recommend
that you buy our cost effective commercial licenses.”

Model effectiveness. Development is directed inside the company. As
with Sleepycat, the product is very complex and can hardly be developed
by third parties. In 2001, another company tried a fork but failed without
being able to control the software development.*”? All contributions are
checked and rewritten by company developers thus not diluting the copy-
right ownership of the product. MySQL currently includes one major
component developed and licensed by a third party.*”” The company esti-
mates that they have fewer problems with free riders than proprietary
software companies; the only case that has ended up in a court was with
the fork.

As of today, MySQL AB receives more income from proprietary license
sales than from their other income sources, branding and services. Their
main income seems to come from embedded commercial users.””* To con-
trast, use on web sites — the products initial market — seems to work after
the license change to GPL as a marketing tool for commercially licensed
use on embedded products.

7.3.5 TrollTech AS

Background. TrollTech AS’s main product is called Qt, which consists
essentially of graphical user interface programming libraries. Qt can be
used to develop multi-platform graphical applications. As a result, the de-
veloped products embedded functionality from Qt libraries.

Development of Qt started in 1992 and the company was founded in
1994 by Haavard Nord and Eirik Eng. In 1996 Qt was released under its
own quite restricted open source license, which did not allow free distribu-
tion of modifications and hence retained full development control with
TrollTech. However, due to available source code Qt was selected to be

2 Progress Software Corp. v. MySQL AB (2002). See MySQL (2001) for more information on
the dispute from MySQL AB'’s perspective.

473 See InnoDB (2004) for more details.

474 Codewalkers (2002).

OFFENSE WITH OPEN SOURCE e 213

used in KDE, which quickly became a very popular free desktop environ-
ment for Unix and Linux systems.

As its popularity and importance grew with KDE, pressure from the free
software community to allow redistributable modification increased. In
1998 the license was changed to QPL, TrollTech’s own reciprocal license.
QPL allows distribution of modifications as separate patches. In 2000 Qt
was finally released also under GNU GPL allowing modifications of the
entire software to be distributed for free. The GPL release was also delayed
by the company founder’s initial skepticism towards open source.””

Licensing model. The licensing model of Qt is essentially the same as
with the two products described above. Qt is licensed under GPL, QPL
and a proprietary license. Products made with the GPLed (or QPLed) ver-

sion must use the same free license. TrollTech’s website states:*”®

“Based on the “Quid Pro Quo” principle, if you wish to derive a
commercial advantage by not releasing your application under an
open source license, you must purchase an appropriate number of
commercial licenses from Trolltech. By purchasing commercial li-
censes, you are no longer obliged to publish your source code.”

Model effectiveness. Development is coordinated within the company.
Before the introduction of QPL, TrollTech’s license terms granted that the
company had full control of the development. However, now Qt also con-
tains some code that is not owned by TrollTech AS but is rather licensed
under a very permissive license from third parties.*”” From licensing per-
spective, the introduction of GPL includes the possibility of forks but in
practice it seemed to result instead in an excellent marketing move.*”®

TrollTech sales are based on proprietary licenses. Qt is marketed
through a combination of direct sales, resellers, and strategic partners. The

7 Fremy (2001).
476 TrollTech (2004).
47 TrollTech (2003).
78 Fremy (2001).

OFFENSE WITH OPEN SOURCE e 214

role of the free version is mainly to grow the user base and market the

product on the KDE environment.*”

7.3.6 When Does Dual Licensing Make Sense?

Licensing and intellectual property issues. In every dual licensing case
example, the open source license included a strong reciprocity obligation. As
noted, strong reciprocity (also called copyleft) means that even adaptations
and derivative works must keep the license terms intact. In other words, if
the source code is initially distributed free of charge then no one can
charge for the source code later in any adaptation. GNU GPL and Sleepy-
cat Licenses are both accepted as copyleft by the Free Software Founda-
tion.** While QPL does not fill the strict community definition of copyleft,
it also essentially functions in the same way.

Lerner and Tirole have argued that open source products targeted at
developers tend to have permissive licenses.*” The model presented in this
case study contradicts their finding: in a dual licensing model, the software
company uses a highly restrictive reciprocal license in a product specifi-
cally geared towards developers for embedded use. A possible explana-
tion for this contradiction is that the data set studied by Lerner and Tirole
consisted mainly of non-commercial projects at Sourceforge.

Another fundamental legal requirement for dual licensing is that the
software company has undisputed rights to the software product it wishes
to dual license. Ownership of rights is central because it allows company
to price its software, change its licensing policy and distribute software
with different licenses. A major legal risk in using open source licenses is
that the license may dilute the ownership and even eliminate the possibil-
ity to dual license. Therefore, rights ownership must be managed carefully.
The one who has written new or rewritten old software is granted exclu-
sively copyright to the work. However, with multiple authors the copy-
right ownership may also become distributed. Under a strong reciprocity
obligation, a fully open and distributed development process without suf-

479 Tbid.
40 Free Software Foundation (2004b)
41 Lerner and Tirole (2005).

OFFENSE WITH OPEN SOURCE e 215

ficient rights clearing is not suitable for any company that wishes to make
any direct license sales with dual licensing. No hidden liabilities in code
contributions from unknown third parties should remain.

Economic issues. Dual licensing also depends on several distinctive
economic implications that must be at hand. First, there must be suffi-
ciently large user base for the product. Here, the reciprocal license enables
strong network effects typical to information products: the value of the
product to single user depends on the number of user it has. With the free
availability and efficient distribution of the product through the Internet
there are not many limitations for exponential user base growth. Especially
software that depends on separate distributed components interoperating
directly has strong network effect. Shy and Thisse have demonstrated that
when network effects are strong, unrestricted copying and distribution of
the software product results in an equilibrium in a simplified setting
within non-cooperative competitors.**

Second, the effectiveness of dual licensing depends on price discrimina-
tion. A software company that manages all rights to the product may li-
cense it according to market demand.**® For example, our case study have
shown that if there is demand for both stand-alone and embedded prod-
ucts, then dual licensing may be an economically viable model. Also worth
noting is that in dual licensing the licensing policy — not the product fea-
tures — are tailored. Only those users that have direct benefit from the use
of the software are required to pay a license fee and for other users pay-
ment is more or less optional.

Third, there seems to be no major requirements for the enforcement of copy-
right. The little data we have indicates that high-end corporate users re-
quired to purchase a proprietary license also do so. Also empirical evi-
dence shows that illegal copying of software in general has decreased dur-

ing 1995-2000 relative to the software market.***

Open source license op-
tion may strengthen this trend. While traditional copyright licensing

model is still plagued by a vast number of unauthorized users, the free li-

*2Shy and Thisse (1999).
*3 Shapiro and Varian (1999).
484 Osario (2002).

OFFENSE WITH OPEN SOURCE e 216

cense conversely supports free usage by the majority of users who would
not pay the license fee anyway. Worth to note is also that for someone who
embeds a free product into a commercial one, the license purchase does
not lead to the ethical and philosophical issues one may have with tradi-
tional copyright enforcement and zero tolerance. Instead, dual licensing is
one answer to the economic question of how the copyright owner should
protect his work.

Finally, the case studies have shown that the company as an organiza-
tion needs to believe in the reciprocal licensing model. At first, it may sound
counterintuitive, but if the product has for example both stand-alone and
embedded users then strong reciprocity may be workable. Moreover,
GNU GPL license seems to be a viable marketing tool in dual licensing.
TrollTech was not convinced that GNU GPL license would allow them to
continue the sales of proprietary licenses until they tried. In side, they re-
ceived increasing media attention and political acceptance. MySQL had
almost similar experience.

7.4 Concluding Remarks

This chapter has used the developed economic and legal frameworks to
analyze different actual licensing strategies through case studies. In the
first part we discussed licensing strategies in operating system markets. In
the second part we discussed dual licensing as a new business strategy.

The impact of open source licensing has been particularly clear and
thorough in the markets for operating systems. Open source has forced in-
cumbents to change their licensing strategies as the example of Linux has
forced them to battle for developers and answer to increasing customer
concerns and needs. Today, all major operating system software develop-
ers use open source licensing models at least in some part of their prod-
ucts.

Dual licensing — licensing technically identical product with both pro-
prietary and open source licenses — seems to be a viable model for specific
types of new software companies. However, dual licensing is no silver bul-
let. We have identified several organizational, legal and economic limita-

OFFENSE WITH OPEN SOURCE e 217

tions and requirements, which may in practice limit the usability of the
model.

The general limitations of the case studies deserve also attention. Our
case examples were few in number and discussed qualitatively mainly
successful companies. For example, during the company selection process
no particularly successful stand-alone end-user applications were encoun-
tered. Open source licensing strategies seem to work best for technical
products that are aimed rather at developers than end-users. Operating
systems and databases are exactly such products.

CONCLUSIONS e 218

8 CONCLUSIONS

8.1 The Rise of Open Source

Open source has been part of the software industry from the start. The
idea of open source code was however hiding during the 1980s and early
1990s when the development and market conditions favored centralized
and closed development and proprietary licensing. In the 1990s, the envi-
ronment then eventually changed.

We identified a number of explanations to open source’s rise into the
mainstream of the software industry. From technical perspective, the rapid
growth of the Internet, the trend towards cheap PC computers and a need
for more flexible development methods have supported open source.
From business perspective, open source has offered possibilities for new
companies to change the existing market structure and rules of the game.
Open source has also altered the market strategies of incumbents. From so-
cial policy perspective, open source has been claimed to be a tool for more
democracy, access to information and social equality as the role of soft-
ware in the society continues to increase.

By any means, open source remains a source of controversies. There is
no singular open source community but rather multiple individual voices
stemming from the hacker culture, whose leftist and liberal ideals origi-
nate from the 1970s. Among software developers, Free Software Founda-
tion and its supporters want software to be free from corporate control,
while Open Source Initiative and other pragmatics only feel open source is
the most effective way to innovate.

Also the software industry has debated about the benefits and draw-
backs of open source for years now. Some companies, notably Microsoft,
have openly criticized the principles of open source as anti intellectual
property. Others openly support open source development — where it only
benefits their strategy. After the founding of Open Source Initiative in
1998, open source software, development and licensing have arguably be-
come more corporate-friendly. Ideological opinion leaders such as Richard

CONCLUSIONS e 219

Stallman have somewhat marginalized and moved their attention from
software development to more general social policy issues.

8.2 Impact on Licensing Practices

Journalist Robin “Roblimo” Miller describes the state of licensing dis-
cussion in early 2005 as follows:**°

“A NewsForge article about software licensing or software patents
two years ago would draw 20,000 - 40,000 readers and might lead to
a Slashdot discussion with 500 comments, of which 150 were sub-
stantive. Now, although [open source software] is more widely used,
the readership of licensing-related articles is typically less than 5000
(with rare exceptions), and Slashdot discussions on the topic are both
smaller and less substantive.

I can't give you figures for other tech news sites, but I can tell you
that, from what I read on IT journalism email lists, reportorial inter-
est in software licensing issues is dropping steadily.”

Decreasing news interest in open source — and software licensing issues
in general — suggests that the software industry has already learned what
open source licensing is about. After all, the increasing use of open source
hasn’t changed licensing practices in the entire industry overnight. When
open source licensing has indeed changed licensing practices, it has hap-
pened over a long period of time and in specific markets such as Internet
infrastructure and operating systems.

From legal perspective, the use of standardized and relatively simple li-
cense templates could — in principle — mean less legal fuss. For instance, in
joint software development projects the use of “neutral” open source li-
censes may provide a fair balance to the interests of all participants and
save both time and money.

% Robert “Roblimo” Miller’s message to license-discuss@opensource.org March 3, 2005.

CONCLUSIONS e 220

However, the devil is in the details. At a closer look, open source li-
censes are not free from legal risks, ambiguous language and uncertain
economic implications. The central question of reciprocity obligation —
copyleft — is not settled, and the question even seems to be license-specific.
The licenses have different approaches to software patents — for example,
many licenses don’t accept any patent royalties. Moreover, many open
source licenses don’t even accept the co-existence of other open source li-
censes being incompatible with each other.

Though the number of different open source licenses is already over
fifty — and most of them are just confusing complex copies of others — there
are only few truly popular licenses. Thus, despite all the fuss and uncer-
tainties, the original ideas of simple, understandable and fair licensing
practices still live. To compare, every proprietary software product typi-
cally carries its own, unique license with unique problems, and unique
risks. Arguably the licensing issues of 1000 open source products are thus
cheaper and more straightforward to manage than the licensing issues of
1000 proprietary products.

From economic perspective, the licenses seem to carry indeed fundamental
implications. If direct license royalties — either based on copyright or pat-
ents — are not possible, how can a software company generate increasing
returns? Do open source licenses “cannibalize” markets for proprietary li-
censes?

Perhaps they do in principle, but in practice market forces are already
adapting. IPR restrictions are only one of the possible means to price soft-
ware. As noted already in the first chapter, software is increasingly sold as
services under long-term subscription agreements. Granted, also subscrip-
tions may be based on copyright and patent laws. However, if they also
bundle maintenance, support and other “services”, intellectual property
royalties and software licenses are no longer that crucial. Moreover, we
have witnessed open source start-ups that essentially use open source li-
censes as marketing tools for their proprietary offerings. To conclude,
open source licensing should not be seen as an “either-or” dilemma but as
an adaptive complement to the existing proprietary licensing practices in
the software industry.

CONCLUSIONS e 221
8.3 Impact on Intellectual Property Management

When intellectual property protection was initially granted for software
products in the early 1980s the aim was to prevent free riding and foster
the new software mass markets. The software copyright system soon bal-
anced itself. Extreme proposals for copy protection systems didn’t get
through market forces and the copyrightability of interfaces was turned
down by the courts and lawmakers. At the same time, however, the intel-
lectual property system continued its expansion elsewhere: software pat-
enting grew rapidly during the 1990s.

Legal scholars have continued to debate whether and to what extent
copyright, patents or some other legal protection regime should be applied
to computer programs. One of the main theoretical arguments for the pro-
tection of non-literal aspects of software is that software copyright is in-
complete and thus insufficient. The argument goes that copyright does not
cover what is really valuable in software. For example Samuelson et al ex-
plained in 1994 after interface trials that software copyright has met its
limits and software needs sui generis protection — something like WIPO
proposed already in the late 1970s adopting more elements from the patent
system to copyright.**® Essentially similar arguments have been repeated
recently by e.g. Lessig.*”

The main weakness common to all of these arguments is their abstract-
ness. It is difficult to give practical evidence that software markets based
on copyright do not function or that the markets would function essen-
tially better with additional intellectual property protection. Open source
licensing is based essentially on copyright and supporting contract law
provisions. Any additional intellectual property or technical protection
would probably only endanger the functionality of the model.

Thus, it can be argued that open source highlights the negative effects
from the continuous expansion of both intellectual property right legisla-
tion and the actual use of those rights. Especially increasing patenting has
increased infringements risks in software development. Thus, intellectual

46 Samuelson et al (1994).
7 Lessig (2001).

CONCLUSIONS e 222

property infringement risks must be taken more seriously at both com-
pany and community level. The fact is that no open source business model
has so far benefited anything from patents and the expansion of intellec-
tual property.

Licenses themselves are merely legal technique. However, they have
changed thinking on how to use copyright and other intellectual property
rights in practice. They have brought “Internet-businesses” into main-
stream software markets. They have shown that it makes surprisingly of-
ten sense to give most exclusive rights to the general public for free. Obvi-
ous challenges remain. While the value of intellectual property probably
increases from free sharing, it also becomes more complex to appropriate.
The challenging business questions for any software company therefore is,
how to navigate through open source licensing without losing business
proposition.

8.4 Impact on Commercial Regulation and Legal Study

This book has showed how the software industry has started to adopt
open source licensing models and changed their business propositions ac-
cordingly. New start-ups have challenged incumbents in such areas of
software development where it was most unanticipated a few years back.
At the moment, the principles of open source licensing are generalized to
numerous other copyrighted works and patented inventions. There is
vivid discussion and initiatives ranging from open content for music and
movies to open access for science and educational material. “Open what-
ever” seems to be a kind of counterforce in the evolution towards extensive
commercial regulation of the society at large.**

Thus, openness balances commercial regulation. When there was no ex-
tensive regulation of private entitlements to every imaginable object of the
society, there simply was no need to balance the public interest by explicit
anti-licensing. But today practically every little piece of software, musical
compositions, moving pictures, scientific findings and educational litera-

8 Weber (2004), p. 267-268, warns not to overgeneralize open source, since many recent initia-
tives do not share “the property regime that makes open source distinctive”.

CONCLUSIONS e 223

ture is under more or less restrictive exclusive rights. For various eco-
nomic, moral and social policy reasons explained in this study, there
seems to be need for explicit licensing systems that realize the original bal-
ance of interests behind the exclusive rights of copyrights and patents,
may it happen in the shadow of the law.** In short, open licensing systems
have proved how overregulation can be fixed without state intervention.

In this way, open source emphasizes a more material study of intellectual
property rights. For sure, legal policy debate — with substantial input from
economists, philosophers etc. — on the merits and drawbacks of new intel-
lectual property treaties and legislation is already immense. Usually, the
question is whether a proposed new extension to a given intellectual prop-
erty right should be accepted. The study of open source and other licens-
ing issues takes the focus from these borderline cases right back to the cen-
tre. When a substantial number of right holders in a given industry decide
not to enforce their core intellectual property rights — relying on economic-
rational arguments — the premises of the policy discussion can be seen in a
new light. Why and how do companies do that? What does it mean to the
intellectual property system as a whole? Whether one should hold to the
government granted intellectual property rights to the fullest is again a
relevant question for any software developer and lawmaker alike.

Can open source licensing research have any impact on future
(de)regulation? This book has for example proposed reforms to intellectual
property liability rules based on the needs and central role of open source
developers in the society at large. Here, we must note that the political
open source and intellectual property discussion is inherently global as the
intellectual property policy is one of main issues at world trade negotia-
tions. In the end these policies are human made. A promising note is that
the number of discussing parties involved has increased in the relevant fo-
rums. For example different non-governmental interest groups have an in-
creasing influence at the negotiations of WTO and WIPO.*" And especially

% Ellickson (1991) noted that many social norms work “beyond the law” without any reference
to actual legal rules. Merges (2004) continues the language-game and points out that open
source in fact works “despite the law” indirectly criticizing the potential threats from the ex-
pansion of intellectual property rights .

#0 On the policy tendency in general see Castells (1996), pp. 80-90, and on intellectual property
in particular Matthews (2000), pp. 128-135.

CONCLUSIONS e 224

non-governmental organizations representing the interests of open source
software developers have proposed that academic researcher should be
taken more seriously into account when new policies are set and old ones
revised.

FIGURES AND TABLES e 225

FIGURES AND TABLES

FIGURE 1. TOTAL REVENUES FROM THE TOP 500 US-BASED SOFTWARE COMPANIES. 15
FIGURE 2. MARKET SHARE OF WEB SERVERS.cc.ceettrterteeutertesteeiestestesssesasesasesnsesneessesnnens 17
FIGURE 3. MAIN WEB SERVER SOFTWARE COMPONENTS IN THE EARLY 2000S.......ccccecuervuennnen. 18
FIGURE 4. ILLUSTRATION OF LICENSING MODELS FROM REVENUE GENERATION PERSPECTIVE

OVER TIME. ..eutteuteeteenteeteeteete et e st euse s bt sateeatesabesateeabesabesateeaseeasesateembesabesaseeaseeasesanesanens 26
FIGURE 5. THREE MAIN WAYS TO DISTRIBUTE SOFTWARE PRODUCTS FROM SOURCE CODE

PERSPECTIVE. «.uveutteutetteutententensesteestensensensessesseestensensensessessesseensensensensessesseensensensensessessesnen 29

FIGURE 6. BENEFITS OF OPEN SOURCE ACCORDING TO IT MANAGER INTERVIEWS IN 2004 38
FIGURE 7. CHALLENGES OF OPEN SOURCE ACCORDING TO IT MANAGER INTERVIEWS IN 2004.

.. 39
FIGURE 8. DIFFERENT COST FUNCTIONS IN THE PRODUCTION OF INFORMATION GOODS. 51
FIGURE 9. COMPONENTS APPROACH TO SOFTWARE PRODUCTS. ...cevveuverureeiieniiesiiesieesieeseesanens 55
FIGURE 10. AN OPEN INNOVATION MODEL. ...ceeutteuteeteeteeieeteeteesessessesssesasesnsesnsesnsessesnnens 76
FIGURE 11. EVOLUTION OF SOFTWARE COPYRIGHT AND PATENTS IN THE INDUSTRY HISTORY.

.. 108
FIGURE 12. FUNCTIONAL DIFFERENCES REGARDING COMBINATION AND MODIFICATION

BETWEEN OPEN SOURCE LICENSES.ceuteutesttsteettestentensessessessesseeeesessessessessessensessessessenn 119
FIGURE 13. ABSTRACTION-FILTRATION-COMPARISON METHOD. ...ccuvteeureerveeenureensneeenneennns 126
FIGURE 14. A SIMPLIFIED COMPONENT-BASED VIEW OF A COMPUTER PROGRAM. . . 127
FIGURE 15. DERIVATIVE WORKS AND LOADABLE MODULES .. 129
FIGURE 16. POSSIBLE TERMS WITH RELATED LOGOS IN CC-LICENSES. .. 156

FIGURE 17. DEVELOPER-CHAIN AND IPR INFRINGEMENT.ccccveeeveeannnns ... 166
FIGURE 18. US PATENTS GRANTED BETWEEN 1984-2004. SOURCE: USPTO.
FIGURE 19. SSH USAGE ON INTERNET SERVERS

TABLE 1. A HISTORICAL TAXONOMY OF THE SOFTWARE INDUSTRYevverveeueenreneeneeneeneesneeneens 13
TABLE 2. GENERIC SOFTWARE BUSINESS MODELS.cevtrterttrtiertenieieneessesiesseeseensensessessesnesseenes 20
TABLE 3. TYPICAL PROPRIETARY LICENSE RESTRICTIONS.cccveeveereereereereesenseeseesesssesnens 26
TABLE 4. SOFTWARE LICENSES AND SERVICES REVENUE OF SOME OF THE WORLD’S LARGEST

SOFTWARE PRODUCT COMPANIES.cvtteeeeuiiieeeaeiitteeesaitreeeesmreeeessasrneeesssneeeessasmneeeessans 28
TABLE 5. PUBLIC GOODS SUCH AS FREE SOFTWARE ARE NON-EXCLUDABLE AND NON-RIVAL..53
TABLE 6. USER CAPABILITIES AND TECHNICAL COPY PROTECTION SYSTEMS.ccveeveerereenne 104
TABLE 7. DIFFERENT FORMS OF LEGAL PROTECTION OF SOFTWARE IN THE INDUSTRY HISTORY.

.. 107

TABLE 8. MOST USED OPEN SOURCE LICENSES ON PROJECTS HOSTED AT SOURCEFORGE. 122

FIGURES AND TABLES e 226

TABLE 9. COPYRIGHT FUNCTIONALITY IN DIFFERENT LICENSE TYPES.vveeevvveerereeeveeenveennns 162
TABLE 10. COMPARISON OF DIFFERENT IPR DEFENSE OPTIONS FOR OPEN SOURCE DEVELOPERS.
.. 173

TABLE 11. TOTAL NUMBER OF US PATENTS GRANTED FROM 1984 TO EARLY AUGUST 2004.
SOURCE: USPTO ..176
TABLE 12. MICROCOMPUTER OPERATING SYSTEM COMPETITION IN THE EARLY 2000s. 194
TABLE 13. MAIN LICENSING OPTIONS IN DIFFERENT LOGICAL LEVELS OF THE OPERATING
SYSTEM ..ttteiuititeeeeauitteeeeaaiteteeeesitteeeseauatteeessataeeesessateeesaasbaaeeeeanbaeeesaasbateeesnasbaeeeeanraaeeeas 195
TABLE 14. SOME ATTRIBUTES OF THE STUDIED OPEN SOURCE PRODUCTS......cccveenieenreeveaieanne 209

REFERENCES e 227

REFERENCES

Note: all links to web pages were checked and in function in early 2005. Years in on-
line sources refer to the last modification year of that page when it was referred to. His-
torical web pages can be searched from Internet Archive, http:/ /www.archive.org/

Articles, Books and Reports

Alford, William P. (1995): To Steal a Book Is an Elegant Offense: Intellectual Property Law
in Chinese Civilization, Stanford University Press.

Allison, John R. and Lemley, Mark A. (1998): “Empirical Analysis of the Validity of
Litigated Patents”, American Intellectual Property Law Association Quarterly Journal, Vol-
ume 26, Issue 3, pp. 185-275.

Applied Data Research (2003): Software Products Division Records 1959-1987, Charles
Babbage Institute, University of Minnesota, Minneapolis. Description of the collection
is available at http:/ /www.cbi.umn.edu/ collections/inv/cbi00154.html

Arora, Ashish and Fosfuri, Andrea and Gambardella, Alfonso (2004): Markets for
Technology. The Economics of Innovation and Corporate Strategy. MIT Press.

Arrow, Kenneth J. (1962): “Economic welfare and the allocation of resources for in-
vention”, in Richard R. Nelson (ed.): The Rate and Direction of Inventive Activity. Prince-
ton University Press, Princeton.

Bakels, Reinier (2002): The Patentability of Computer Programmes, European Parliament
Directore-General for Research Working Paper, 2002

Band, Jonathan and Kato, Masanobu (1995): Interfaces on Trial. Intellectual Property
and Interoperability in the Global Software Industry. Westview Press.

Bednarek, Michael and Ineichen, Markus (2004): “Patent Pools as an Alternative to
Patent Wars in Emergent Sectors”, Intellectual Property & Technology Law Journal, Vol-
ume 16, Issue 7.

Beresford, Keith (2000): Patenting Software Under the European Patent Convention.
Sweet & Maxwell.

Berry, David M. (2004): “The contestation of code. A preliminary investigation into
the discourse of the free/libre and open source movements”, Critical Discourse Studies,
Volume 1, Issue 1, pp. 65-89.

Besen, Stanley M. (1987): New Technologies and Intellectual Property: An Economic
Analysis. A Rand Note. Santa Monica, California.

REFERENCES e 228

Besen, Stanley M. and Raskind, Leo J. (1991): “An Introduction to the Law and Eco-
nomics of Intellectual Property”, Journal of Economic Perspectives, Volume 5, Issue 1, pp.
3-27.

Bessen, James and Maskin, Eric (2000): “Sequential Innovation, Patents, and Imita-
tion”, working paper.

Bessen, James and Hunt, Robert M. (2003): “An Empirical Look at Software Patents”,
National Bureau of Economic Research Working Paper #2003-17

Bessen, James (2004): “Patent Thickets: Strategic Patenting of Complex Technolo-
gies”, working paper.

Betterle, Richard S. and Davison-Jenkins, Dominic J (2001): “Coverage concepts for
intellectual property”, Risk Management , Volume 48, Number 2, pp. 17-21.

Blind, Knut and Edler Jakob and Nack, Ralph and Strauss, Joseph: Mikro- und mak-
rookonomische Implikationen der Patentierbarkeit von Softwareinnovationen, Bundesministe-
rium fiir Wirtschaft und Technologi, 2001. Available at
http:/ /www.bmwi.de/Navigation/Service /bestellservice,did=21760.html

Borenstein, Severin and Farrell Joseph and Jaffe, Adam B (1998): “Inside the Pin-
Factory: Empirical Studies Augmented by Manager Interviews”, Journal of Industrial
Economics, Volume 46, Number 2, pp. 123-124 .

Braunstein, Yale M. and Fisher, Dietrich M. and Ordover, Janusz A. and Baumol
William J. (1979): “Economics of Property Rights as Applied to Computer Software and
Data Bases. Overview of Issues”, in George P. Bush and Robert H. Dreyfuss (editors):
Technology and Copyright. Revised edition. Lomond Books, Mt. Airy, Maryland.

Bride, Edward (2002): “CBI conference — “Unbundling history: The emergence of the
software product””, IEEE Annals of the History of Computing, Volume 24, Issue 1, web
extras, available at http:/ / www.computer.org/annals/articles/al-2002 / eands.htm

Brooks, Frederik P. (1975): The Mythical Man-Month, Addison-Wesley.

Calabresi, Guido (1970): The Costs of Accidents. A Legal and Economic Analysis. Yale
University Press.

Campbell-Kelly, Martin (2003): From Airline Reservations to Sonic the Hedgehog. A His-
tory of the Software Industry. MIT Press.

Carr, Nicholas G. (2004): Does IT Matter? Information Technology and the Corrosion of
Competitive Advantage. Harvard Business School Press.

Castells, Manuel (1996): The Rise of the Network Society. Blackwell Publishers.

Chévez, Andrea and Tornabene, Catherine and Wiederhold, Gio (1998): “Software
Component Licensing. A Primer”, IEEE Software, Volume 15, Issue 5, pp. 47-53.

Chesbrough, Henry (2003): Open Innovation. The New Imperative for Creating and Prof-
iting from Technology. Harvard Business School Press.

REFERENCES e 229

Coase, Ronald H. (1937): “The Nature of the Firm”, Economica, Vol. 4, No. 16. pp.
386-405.

Conner, Kathleen Reavis and Rumelt, Richard P. (1991): “Software Piracy: An
Analysis of Protection Strategies”, Management Science, Volume 37, Number 2, pp. 125-
139.

CONTU (1978): Final Report of the National Commission on New Technological Uses of
Copyrighted Works, July 31, 1978. Commerce Clearing House, Chicago.

Cusumano, Michael A. (2004): The Business of Software. The Free Press.

Daffara, Carlo and Carlo Gonzélez-Barahona, Jests M. (ed.) (2000): Free Software /
Open Source: Information Society Opportunities for Europe? Working Group on Libre
Software, Version 1.2., available at http:/ / eu.conecta.it/ paper/paper.html

Dasgupta, Partha David Paul A. (1994): “Toward a new economics of science”, Re-
search Policy, Volume 23, pp. 487-521.

David, Paul A. and Greenstein, Shane (1990): “The Economics of Compatibility
Standards: An Introduction to Recent Research”, Economics of Innovation and New Tech-
nology, Volume 1, Issue 1, pp. 3-41.

David, Paul A. and Foray, Dominique and Hall, Bronwyn H. and Kahin, Brian and
Steinmueller, W. Edward: “Is there really a good economic rationale for an EU Direc-
tive on Software Patents?”, working paper, 14 July 2003

Davis, Steven J. and MacCrisken, Jack and Murphy, Kevin M. (2001): “Economic
Perspectives on Software Design: PC Operating Systems and Platfroms”, National Bu-
reau of Economic Research Working Paper Series, paper #8411, available at
http:/ /www.nber.org/ papaers/ w8141

Dietz, Adolf (1994): “The Artist’s Right of Integrity Under Copyright Law — A Com-
parative Perspective”, IIC, Volume 25, Number 2, pp. 177-194.

Dixit, Avinash K. (2004): Lawlessness and Economics. Alternative Modes of Governance.
Princeton University Press.

Dosi, Giovanni (1982): “Technological paradigms and technological trajectories”, Re-
search Policy, Volume 11, pp. 147-162.

Drahos, Peter and Braithwaite, John (2002): Information Feudalism. Who owns the
knowledge economy? Earthscan.

Dravis, Paul (2003): Open Source Software. Perspectives for Development. The Dravis
Group.

Dreier, Thomas (1991): “The Council Directive of 14 May on the Legal Protection of
Computer Programs”, European Intellectual Property Review, Volume 13, Issue 9, pp. 319-
330.

Drucker, Peter (1990): Managing the Non-Profit Organization. Principles and Practises.
Harper Collins Publishers.

REFERENCES e 230

Economides, Nicholas (1996): “The Economics of Networks”, International Journal of
Industrial Organization, Volume 14, Number 6, pp. 673-700.

Ellickson, Robert C. (1991): Order without Law. Harvard University Press.

Epple, Dennis and Raviv, Arthur (1978): “Product Safety: Liability Rules, Market
Structure, and Imperfect Information”, The American Economic Review, Volume 68, Issue
1. (Mar., 1978), pp. 80-95.

Epstein, Richard A. (1997): “Law and Economics: Its Glorious Past and Cloudy Fu-
ture”, University of Chicago Law Review, pp. 1167-1174.

Farrell, Joseph and Monroe, Hunter K. and Saloner, Garth (1998): “The Vertical Or-
ganization of Industry: Systems Competition versus Components Competition”, Jour-
nal of Economics & Management Strategy, Volume 7, Issue 2, pp. 143-182.

Farrell, Joseph and Klemperer, Paul (2001): “Coordination and Lock-In: Competition
with Switching Costs and Network Effects”, working paper,
http:/ /emlab.berkeley.edu/users/ farrell / ftp /lockin.pdf

Feller, Joseph and Fitzgerald, Brian (2002), Understanding Open Source Software Devel-
opment, Addison-Wesley.

Ferhstman, Chaim and Gandal, Neil (2004): “The Determinants of Output Per Con-
tributor in Open Source Projects: An Empirical Examination”, working paper,
http:/ /ideas.repec.org/s/cpr/ceprdp.html

Fink, Martin (2002): The Business of Linux and Open Source. Prentice Hall.

Foray, Dominique (2004): Economics of Knowledge. MIT Press.

Garzarelli, Giampaolo (2003): “Open Source Software and the Economics of Organi-
zation”, working paper, http:/ / opensource.mit.edu/ papers/ garzarelli.pdf

Goldstein, Paul (2001): International Copyright, Oxford University Press.

Gottinger, Hans-Werner (2003): Economies of Network Industries. Routledge.

Grad, Burton (2002): “A Personal Recollection: IBM’s Unbundling of Software and
Services”, IEEE Annals of the History of Computing, Volume 24, Issue 1, pp. 64-71.

Granstrand, Ove (1999): The Economics and Management of Intellectual Property. Ed-
ward Elgar.

Grindley, Peter (1995): Standards, Strategy, and Policy. Oxford University Press.

Guadamuz, Andrés (2004): “Viral contracts or unenforceable documents? Contrac-
tual validity of copyleft licenses”, European Intellectual Property Review, Volume 26, Is-
sue 8, pp. 331-339

Hahn, Rober W. (ed.) (2002): Government Policy Towards Open Source. AEI Brookings
Center.

Hardin, Garrett (1968): “The Tragedy of the Commons”, Science, Volume 162, pp.
1243-1248.

REFERENCES e 231

Hart, Robert and Holmes, Peter and Reid, John: The Economic Impact of Patentability of
Computer Programs, Report to the European Commission on behalf of Intellectual Prop-
erty Institute, London 2000. Available at
http:/ /europa.eu.int/ comm/internal_market/en/indprop/comp/studyintro.htm

Hayek, Friedrich A. (1945): “The Use of Knowledge in Society”, American Economic
Review, Volume 35, Issue 4, pp. 519-530.

Heller, Michael A. (1998): “The Tragedy of the Anti-Commons: Property in the Tran-
sition from Marx to Markets”, Harvard Law Review, Volume 111, Issue 3, pp. 621-688.

Himanen, Pekka (2001): The Hacker Ethic and the Spirit of the Information Age. Random
House.

von Hippel, Eric (1988): Sources of Innovation. Oxford University Press.

von Hippel, Eric (2002): “Open Source Projects as Horizontal Innovation Networks -
By and For Users”, MIT working paper.

Humprey, Watts S. (2002): “Software unbundling: a personal perspective”, IEEE An-
nals of the History of Computing, Volume 24, Issue 1, pp. 59-63.

Jaffe, Adam B. and Lerner, Josh (2004): Innovation and Its Discontents. Princeton Uni-
versity Press.

Jaeger, Till and Metzger, Axel (2001): Open Source Software. Rechtliche Rahmenbedin-
gungen der Freien Software. Verlag C.H. Beck.

Janse, Christian (2003): “Economic Effects of the New German Copyright Contract
Law”, working paper, available at
http:/ /ideas.repec.org/p/wpa/wuwple/0302003.html

Johnsen, Torkil C. (1969): “Om patenterbarheden af EDB-programmer” (English
Summary: On the Patentability of Computer Software), Nordiskt Immateriellt Rittskydd,
Volume 39, Issue 2, pp. 165-168.

Katz, Michael and Shapiro, Carl (1985), “Network Externalities, Competition and
Com-patibility,” American Economic Review, Volume 75, Issue 3, pp. 424-440.

Kelly, Kevin (1998): New Rules for the New Economy. Viking Press.

Kelty, Christopher M. (2001): “Free Software/Free Science”, First Monday, Volume 6,
Issue 12, available at
http:/ /www.firstmonday.org/issues/issue6_12/kelty /index.html

Kenney, Martin (2000): “Introduction”, in Kenney, Martin (ed.): Understanding Silicon
Valley, Stanford University Press, pp. 1-12.

Kitch, Edmund W. (1977): “The Nature and Function of the Patent System”, Journal
of Law and Economics, Volume 20, pp. 265-290

REFERENCES e 232

Koktvedgaard, Mogens (1968): “Elektronisk databehandling. Immaterialretlige as-
pekter” (English Summary: Computers and the Law of Intellectual Property), Nordiskt
Immateriellt Rittskydd, Volum 36, Issue 2, pp. 139-151.

Kuhn, Thomas (1962): The Structure of Scientific Revolutions. University of Chicago
Press.

Landes, William M. and Posner, Richard (1989): ” An Economic Analysis of Copy-
right Law”, Journal of Legal Studies, Volume 18, Issue 2, pp. 325-363.

Landes, William M. and Posner, Richard A. (2003): The Economic Structure of Intellec-
tual Property Law, Harvard University Press.

Lanjouw, Jean O. and Pakes, Ariel and Putnam, Jonathan (1998): “How to Count
Patents and Value Intellectual Property: The Uses of Patent Renewal and Application
Data”, Journal of Industrial Economics, Volume 46, Issue 4, pp. 405-432

Lanjouw, Jean O. and Schankermann, Mark (2001): “Characteristics of Patent Litiga-
tion: A Window on Competition”, RAND Journal of Economics, Volume 32, Issue 1, pp.
129-51.

Lanjouw, Jean O. and Schankermann, Mark (2004) “Protecting Intellectual Property
Rights: Are Small Firms Handicapped? “ Journal of Law and Economics, Volume 47, Issue
1, pp. 45-74.

Lazonick, William (2003): “Understanding Innovative Enterprise: Towards the Inte-
gration of Economic Theory and Business History”, in Amatori, Franco and Jones,
Geoffrey and Galambos, Louis (eds.): Business History around the World, Cambridge
University Press, pp. 31-61.

Leibenstein, Harvey (1950): “Bandwagon, snob, and Veblen effects in the theory of
consumers demand”, Quarterly Journal of Economics, Volume 64, Issue 2, pp. 183-207.

Lemley, Mark A. (2001): “Rational Ignorance at the Patent Office”, Northwestern
University Law Review, Volume 95, Issue 4, pp. 1497-1532.

Lemley, Mark A. (2002): “Intellectual Property Rights And Standard-Setting Orga-
nizations”, California Law Review, Volume 89, pp. 1889-1980.

Lemley, Mark A. and Shapiro, Carl (2004): “Probabilistic Patents”, working paper.

Lerner, Josh and Tirole, Jean (2002): “Some Simple Economics of Open Source”,
Journal of Industrial Economics, Volume 52, pp. 197-23.

Lerner, Josh and Tirole, Jean (2005), “The Scope of Open Source Licensing”, forth-
coming in Journal of Law, Economics and Organization.

Lessig, Lawrence (2001): The Future of Ideas. Fate of the Commons in a Connected World.

Random House.

Lessig, Lawrence (2004): Free Culture. How Big Media Uses Law and Technology to Con-
trol Creativity. Penguin Books.

REFERENCES e 233

Levin, Richard C. and Klevorick, Alvin K. and Nelson, Richard R. and Winter, Sid-
ney (1987): “Appropriating the Returns from Industrial R&D”, Brookings Papers on Eco-
nomic Activity, Volume 3, pp. 783-820.

Liebowitz, Stan (1985): “Copying and Indirect Appropriability: Photocopying of
Journals”, Journal of Political Economy, Volume 93, Issue 5, pp. 945-957.

Liebowitz, Stan J. and Margolis, Stephen E. (2001): Winners, Losers & Microsoft. Com-
petition and Antitrust in High Technology. Revised edition. The Independent Institute.

Liebowitz, Stan J. (2002): Re-Thinking the Network Economy. Amacom.

Locke, John (1690): Second Treatise on Government, available at e.g.
http:/ /www.swan.ac.uk/poli/ texts /locke /lockcont.htm

Luckombe, Philip (1771): The History and Art of Printing. Republished in 1965 by
Gregg Press Ltd, London.

Machlup, Fritz (1958): “An Economic Review of the Patent System", Study no. 15 of
the Subcommittee on Patents, Trademarks, and Copyrights of the Committee on the
Judiciary, United States Senate, 85th Congress, Second Session (Washington, D.C).

Machlup, Fritz (1962): “The Supply of Inventors and Innovations”, in Richard R.
Nelson (editor): The Rate and Direction of Inventive Activity: Economic and Social Factors.
Princeton University Press, Princeton.

Mattei, Ugo (1997): Comparative Law and Economics. The University of Michigan
Press.

Matthews, Christopher May (2000): The Global Political Economy of Intellectual Property
Rights, Routledge.

McKean, Roland M. (1970): “Products Liability: Implications of Some Changing
Property Rights”, The Quarterly Journal of Economics, Volume 84, Issue 4, pp. 611-626.

McKusick, Marshall Kirk (1999): “Twenty Years of Berkeley Unix. From AT&T-
Owned to Freely Redistributable”, in DiBona, Chris et al (eds.) (1999): Open Sources:
Voices from the Open Source Revolution, O'Reilly, pp. 31-46.

Melamed, Douglas and Stoeppelwerth, Ali M. (2002): “The CSU Case: Facts, For-
malism And The Intersection Of Antitrust And Intellectual Property Law”, George Ma-
son Law Review

Menell, Peter S. (1989): “An Analysis of the Scope of Copyright Protection for Appli-
cation Programs”, Stanford Law Review, Volume 41, pp. 1045-1104.

Merges, Robert (2004): “A New Dynamism in the Public Domain”, University of Chi-
cago Law Review, pp. 183-203.

Messerschmitt, David G. and Szyperski, Clemens (2003): Software Ecosystem. Under-
standing an Undispensable Technology and Industry. MIT Press.

REFERENCES e 234

National Research Council (1991): Intellectual Property Rights Issues in Software. Na-
tional Academy Press.

Negroponte, Nicholas (1995): Being Digital. Knopf.

Newcity, Michael A. (1978): Copyright Law in the Soviet Union. Praeger Publishers,
New York.

Nichols, Kenneth (1998): Inventing Software, Quorum Books.

North, Douglass C. (1981): Structure and Change in Economic History. W.W. Norton &
Company.

Novos, Ian E.and Waldman, Michael (1986): “The Emergence of Copying Technolo-
gies: What Have We Learned?”, UCLA working paper,
http:/ /www.econ.ucla.edu/workingpapers / wp408.pdf

OECD (2002): Report of the OECD Task Force on Software Measurement in the National
Accounts. Organisation for Economics Co-operation and Development, Paris.

Oksanen, Ville and Valiméaki, Mikko (2002): “Transnational Advocacy Network Op-
posing DRM - Technical and Legal Challenge to Media Companies”, Journal of Media
Management, Volume 4, Issue 3.

O’Mahony, Siobhan (2003): “Guarding the Commons: How Community Managed
Software Projects Protect Their Work”, Research Policy, Volume 32, Issue 7, pp. 1179-
1198.

Osario, Carlos A. (2002): “A Contribution to the Understanding of Illegal Copying of
Software”, MIT Working paper, available at http:/ / opensource.mit.edu/

Palmer, Tom G. (1989): “Intellectual Property: A Non-Posnerian Law and Economics
Approach”, Hamline Law Review, http:/ / www.tomgpalmer.com/.

Patterson, Lyman Ray (1968): Copyright in Historical Perspective, Vanderbilt Univer-
sity Press.

PbT Consultants (2001): The Results of the European Commission Consultation Ex-
ercise on the Patentability of Computer Implemented Inventions, 2001

Posner, Richard (2002): Antitrust Law. 2™ edition, The University of Chicago Press.

Prasada, Ashutosh andMahajan , Vijay (2003): “How many pirates should a software
firm tolerate?”, International Journal of Research in Marketing, Volume 20, Issue 4, pp.
337-353

Puckett, Allen W. (1966): “The Limits of Copyright and Patent Protection for Com-
puter Programs”, in Copyright Law Symposium Number Sixteen. Nathan Burkan Memorial
Competition Sponsored by the American Society of Composers. Columbia University Press,
New York 1968, pp. 81-142.

Pugh, Emerson W. (2002): “Origins of Software Unbundling”, IEEE Annals of the His-
tory of Computing, Volume 24, Issue 1, pp. 59-63.

REFERENCES e 235

Rahnasto, Ilkka (2003): Intellectual Property Rights, External Effects, and Anti-trust Law.
Leveraging IPRs in the Communications Industry. Oxford University Press.

Rajala, Risto and Rossi, Matti and Tuunainen, Virpi Kristiina and Korri, Santeri
(2001): Software Business Models. A Framework for Analysing Software Industry. Technol-
ogy Review 108/2001. Finnish National Technology Agency, http:/ /www.tekes.fi.

Raymond, Eric S. (2001): The Cathedral and the Bazaar, 2" Edition, O'Reilly.

Rehn, Alf (2001): Electronic Potlatch — a study on new technologies and primitive economic
behaviors, Royal Institute of Technology, Stockholm.

Riis, Thomas (1996): Ophavsret 0g Retsokonomi. Immaterielle goder I kulturokonomisk be-
lysning. (With English summary) Gadjura.

Rose, Carol M. (1986): “The Comedy of the Commons: Custom, Commerce, and In-
herently Public Property”, University of Chicago Law Review, Volume 53, Issue 3, pp.
711-781.

Rosen, Lawrence E. (2004): Open Source Licensing: Software Freedom and Intellectual
Property Law. Prentice Hall.

Rushton, Michael (1998): “The Moral Rights of Artists: Droit Moral ou Droit Pécuni-
aire?”, Journal of Cultural Economics, pp. 15-32

Samelson, K. and Bauer F. L. (1960): “Sequential formula translation”, Communica-
tions of the ACM, Volume 3, Issue 2, pp. 76-83

Samuelson, Pamela and Davis, Randall and Kapor, Mitchell D. and Reichman J.H.
(1994): “A Manifesto Concerning the Legal Protection of Computer Programs”, Colum-
bia Law Review, Volume 94, Issue 8, pp. 2308-2431.

Sarath, Bharat (1991): “Uncertain Litigation and Liability Insurance”, The RAND
Journal of Economics, Volume 22, Issue 2, pp. 218-231.

Schumpeter, Joseph (1942): Capitalism, Socialism and Democracy. Harper & Brothers.

Shavell, Steven (1982): ”On Liability and Insurance”, The Bell Journal of Economics,
Volume 13, Issue 1., pp. 120-132.

Shapiro, Carl (1989): “The Theory of Business Strategy”, The RAND Journal of Eco-
nomics, Volume 20, Issue 1., pp. 125-137.

Shapiro, Carl and Varian, Hal R. (1998): Information Rules. A Strategic Guide to the
Network Economy. Harvard Business School Press.

Shapiro, Carl (2001): “"Navigating the Patent Thicket: Cross Licenses, Patent Pools,
and Standard Setting,” in Jaffe, Adam and Lerner, Joshua and Stern, Scott (eds.): Inno-
vation Policy and the Economy, MIT Press.

St. Laurent, Andrew (2004): Understanding Open Source & Free Software Licensing.
O'Reilly.

REFERENCES e 236

Stallman, Richard (2002): Free Software, Free Society. Selected Essays by Richard M.
Stallman, O'Reilly.

Stille, Alexander (2002): Future of the Past. Picador.

Shy, Oz and Thisse, Jacques (1999), “A Strategic Approach to Software Protection”,
Journal of Economics and Management Strategy. Volume 8, Issue 2, pp. 163-90.

Shy, Oz (2001): The Economics of Network Industries. Cambridge University Press.

Takeyama, Lisa (1994): “Distributing Experience Goods by Giving Them Away:
Shareware — Some Stylized Facts and Estimates of Revenue and Profitability,” Economic
Innovation and New Technology, Volume 3, Issue 2, pp. 161-174.

Takeyama, Lisa (1994b): “The Welfare Implications of Unauthorized Reproduction
of Intellectual Property in the Presence of Demand Network Externalities”, The Journal
of Industrial Economics, Volume 42, Issue 2, pp. 155-166.

Teece, David J. (1986): “Profiting from technological innovation: Implications for in-
tegration, collaboration, licensing and public policy”, Research Policy, Volume 15, Issue
6, pp. 285-305.

Teece, David J. (2000): Managing Intellectual Capital. Oxford University Press.

Torrisi, Salvatore (1998): Industrial Organisation and Innovation. An International Study
of the Software Industry. Edward Elgar.

Torvalds, Linus, and Diamond, David (2001): Just for Fun. The Story of an Accidental
Revolutionary. Harper Business.

Tuomi, Ilkka (2002): Networks of Innovation. Oxford University Press.

Tyler, Michael A. (1986): “The Extent of Software Piracy”, in Huband, Frank L. and
Shelton, R. D. (eds.) (1986): Protection of Computer Software. Law & Business Inc.

Viscusi, W. Kip and Moore, Michael J. (1993): “Product Liability, Research and De-
velopment, and Innovation”, The Journal of Political Economy, Volume 101, Issue 1, pp.
161-184.

Viliméki, Mikko (2003a): “Dual Licensing in Open Source Software Industry”, Sys-
temes d Information et Management, Volume 8, Issue 1, pp. 63-75.

Vilimaiki, Mikko (2003b): “From individuals to political institutions - The discourse
on institutional change in free software and open source communities”, Mediumi, Vol-
ume 2, Issue 1, available at http:/ / www.m-cult.net/ mediumi/.

Vilimaki, Mikko (2004a): “Ajatuksia tekijanoikeuslainsdddannén uudistamiseksi”
(In Finnish, with English summary titled “Some Thoughts on Copyright Law Reform”),
Lakimies, Volume 102, Issue 2, pp. 255-273.

Vilimaki, Mikko (2004b): “A Practical Approach to the Problem of Open Source and
Software Patents”, European Intellectual Property Review, Volume 26, Issue 12.

REFERENCES e 237

Viliméki, Mikko and Hietanen Herkko (2004): “The Challenges of Creative Com-
mons Licensing”, Computer Law Review, Volume 5, Issue 6.

Vilimiki, Mikko and Oksanen, Ville (2005): “The Impact of Free and Open Source
Licensing on Operating System Software Markets”, Telematics and Informatics, Volume
22, Issues 1-2, pp. 97-110.

Watt, Richard (2000): Copyright and Economic Theory, Edward Elgar.

Williams, Sam (2002): Free as in Freedom. Richard Stallman’s Crusade for Free Software.
O'Reilly.

West, Joel and Dedrick, Jason (2001): “Open Source Standardization: The Rise of
Linux in the Network Era,” Knowledge, Technology & Policy, Volume 14, Issue 2, pp. 88-
112.

West, Joel (2003): “How open is open enough? Melding proprietary and open source
platform strategies”, Research Policy, Volume 32, pp. 1259-1285.

von Westrap, Falk (2003): Modeling Software Markets. Empirical Analysis, Network
Simulations and Marketing Implications. Physica-Verlag.

News, Interviews and Online-sources

Akerlof et al. (2002): Amici Curiae, Eldred v. Ashcroft, May 20th, 2002, available at
http:/ /eon.]law.harvard.edu/openlaw / eldredvashcroft/supct/amici/economists.pdf.
Anderson, Ross (2003): “Trusted Computing' Frequently Asked Questions - TC /
TCG / LaGrande / NGSCB / Longhorn / Palladium / TCPA, Version 1.1, August
2003, http:/ /www.cl.cam.ac.uk/ ~rjal4/tcpa-faq.html

Apache (2004): “Apache License v2.0 and GPL Compatibility”, available at
http:/ / www.apache.org/licenses / GPL-compatibility.html

Apple (2003): Darwin FAQ, available at
http:/ / developer.apple.com/darwin/ projects/ darwin/faq.html

Asami, Naoki (2001): “30th Anniversary Interview of Linus Torvalds”, Nikkei Elec-
tronics Online, available at http:/ /ne.nikkeibp.co.jp/english/2001/30aniv/int2

Associated Press (1994): “Microsoft Loses Patent Suit”, Associated Press, February
23, 1994.

Barlow, John Perry (1994): “The Economy of Ideas”, Wired 2.03

Barr, Joe (2004): "HP memo forecasts MS patent attacks on free software”, News-
Forge, 19th July 2004.

Bigelow, Robert P (1970): “Contract Caveats”, Datamation, 1970, Volume 16, Number
11, pp. 41-44.

REFERENCES e 238

Boyle, James (2004): “Give me liberty and give me death?”, Financial Times, October
21, 2004.

Bowman, Lisa M. (2002): “Open-source Visionary: Proprietary software is not okay”,
ZD Net AU, 10" December 2002, available at
http:/ /www.zdnet.com.au/newstech/os/story/0,2000024997,20270554,00.htm

Broersma, Matthew (2002): “Eric Raymond: Why open source will rule”, ZD Net
News, 29" March 2002, available at http:/ / zdnet.com.com /2100-1104-871366.html

Brown, Glenn Otis (2004): “Announcing (and explaining) our new 2.0 licenses”, 25th
May, 2004, http:/ / creativecommons.org / weblog/entry /4216

Business Software Alliance (2004): First Annual BSA and IDC Global Software Piracy
Study, available at http:/ /www.bsa.org/

CJA Consultants (2003): Patent Litigation Insurance. A Study for the European Commis-
sion on possible insurance schemes against patent litigation risks. Final Report.

Codewalkers (2002), Interview of Michael Widenius,
http:/ / codewalkers.com/interviews/Monty_Widenius.html

Cohen, Nancy (2003): “What's GNU? GPL v3 and ASPs “, Open Magazine,
http:/ / www.open-mag.com/ features/Vol_66/GNU/GNU.htm

Computer Business Review (2005): “CA confirms plans for open source patent
pledge”, 3 March, 2005, available at
http:/ /www.cbronline.com/ article_news.asp?guid=DC531E86-85D0-42C4-A752-
DFA5DA446142

Computer Hope (2003): “History of Microsoft Windows”, available at
http:/ / www.computerhope.com/history / windows.htm

ComputerWire (2002): “Clock ticks on Microsoft's licensing — opposition remains “,
The Register, July 31, 2002.
http:/ / www.theregister.co.uk /2002/07/31/ clock_ticks_on_microsofts_licensing/

Conner, Doug (1998): “Father of DOS still having fun at Microsoft”, Microsoft Mi-
cronews, April 10, 1998. Available at
http:/ / www.patersontech.com/Dos /Micronews/ paterson04_10_98.htm

The Economist (2001): “Software Survey”, The Economist, 21 April, 2001.

The Economist (2004a): “Sir Bill and his dragons—past, present and future”, The
Economist, 29 January, 2004

The Economist (2004b): “BRAIN SCAN. Unix's founding fathers.”, The Economist, 10
June, 2004.

European Information Technology Observatory (2004): “Out of the tunnel: Western
European and worldwide markets for Information Technology and Telecommunica-
tions (ICT) are picking up”, press release, 18" February 2004.

REFERENCES e 239

Farber, Dan (2003): “Unplugged: Mérten Mickos, CEO MySQL AB”, ZDNet Tech Up-
date.

Fichera, Richard (2004): “Linux IP Litigation: Users Largely Unconcerned About
SCO Suit, Indifferent To Indemnification”, Forrester Research, 14th May 2004, summary
available at http:/ / www .forrester.com

Ford, Nelson (2000): “The History of Shareware & PsL”, available at
http:/ / www.asp-shareware.org / users/history-of-shareware.asp

Foundation for Free Information Infrastructure (2004): “The TRIPs Treaty and Soft-
ware Patents”, http:/ / swpat.ffii.org/analysis/ trips/

Free Software Foundation (2002): “Free Software Foundation Announces Support of
the Affero General Public License, the First Copyleft License for Web Services “,
http:/ /www.gnu.org/ press/2002-03-19-Affero.html

Free Software Foundation (2003): “BSD License Problem”,
http:/ /www.gnu.org/ philosophy / bsd.html

Free Software Foundation (2004): “Frequently Asked Questions about the GNU
GPL”, available at http:/ /www.gnu.org/licenses/ gpl-faq.html

Free Software Foundation (2004b), “Various Licenses and Comments about Them”,
http:/ /www.gnu.org/licenses/license-list.html

Fremy, Philippe (2001), “Interview: Trolltech’s President Eirik Eng”,
http:/ /dot.kde.org /1001294012 /

Fried, Ina (2004): ”Gates wants patent power”, News.com, 29th July 2004

Gates, William H. (1976): “An Open Letter to Hobbyists”, 3" February 1976, avail-
able e.g. at http:/ / www.blinkenlights.com/ classiccmp / gateswhine.html

Geiber, Jason (2004): “Government Open Source Policies”,
http:/ /www.csis.org/ tech/OpenSource /0408_ospolicies.pdf

Google Zeitgeist (2004): http:/ / www.google.com/ press/ zeitgeist/ archive. html

Greene, Thomas C. (2001): “Ballmer: “Linux is a cancer””, The Register, June ond
2001, http:/ / www.theregister.co.uk/2001/06 /02 /ballmer_linux_is_a_cancer/

Hewlett-Packard (2003): “HP indemnifies Linux customers against SCO lawsuit”,
24th September 2003, available at http:/ / www.hp.com/

Hirsch, Phil (1966): “The Patent Office Examines Software”, Datamation, November
1966, pp. 79-81.

Hirsch, Phil (1968): “CCPA Reconsiders Patent Decision and Prater & Wei Wait "Er
and Pray”, Datamation, April 1968, pp. 174-175.

Hirsch, Phil (1969): “Conference Considers Software Legal Issues and It's Good
News Two to One”, Datamation, November 1969, pp. 357-359.

REFERENCES e 240

Howard, James (2001): “The BSD Family Tree”, Daemon News, available at
http:/ / www.daemonnews.org /200104 /bsd_family.html

Hubbard, Jordan (2003): ”A Brief History of FreeBSD”, available at
http:/ /www.freebsd.org/doc/en_US.ISO8859-1/books /handbook / history.html

Greant, Zak (2002), The Future of MySQL, presentation at SD Expo 24.4.2002, San
Jose, CA, USA, http:/ /www.mysql.com/information/ presentations/index.html

IBM (2002): Common Public License Frequently Asked Questions, http:/ /www-
106.ibm.com/ developerworks/library / os-cplfaq.html, June 1, 2002

IBM (2005): “IBM Statement of Non-Assertion of Named Patents Against OSS”,
available at http:/ /www.ibm.com/ibm/licensing/ patents/ pledgedpatents.pdf

IDC (2003): “IDC Says Microsoft Is Moving into Dominant Role in Server Operating
Environments, Even as Linux Grows”, IDC press release, 8th October 2003.

Initiative for Software Choice (2004): “Initiative for Software Choice — Key Mes-
sages”, http:/ /www.softwarechoice.org /download_files/Key_ISC_messaging.pdf

InnoDB (2004): “MySQL /InnoDB (= MySQL Pro) commercial licensing”,
http:/ /www.innodb.com/licenses.php

Irlam, Gordon (1998): “Software Patents”, http:/ / www .base.com /software-
patents/software-patents.html

Jo Foley, Mary (2004): “FlexWiki: Microsoft's Third Open Software Project”, eWeek,
September 28, 2004, available at
http:/ / www.eweek.com/ article2/0,1759,1657278,00.asp

Kane, Margaret (2002): “W3C bows to royalty-free pressure”, News.com, November
14", 2002.

Kelly, J. S. (2000): “An interview with Richard Stallman”, LinuxWorld.com, 29th
March, 2000, http:/ / www.itworld.com/Man /2687 /LWD000329rms /

Kilgard, Ron et al (1995): Amicus curiae, Lotus v. Borland. December 1995. Available
at http:/ /www-swiss.ai.mit.edu/6805/articles/int-prop /lotus /law-prof-amicus. txt

Krim, Jonathan (2003): “The Quiet War Over Open-Source”, Washington Post, August
21, 2003.

LaMonica, Martin (2004): “Pandora's box for open source”, CNET News.com, Febru-
ary 12, 2004, available at http:/ /zdnet.com.com/2100-1104-5157874.html

Lawson, Stephen (2004): “Microsoft goes open source with WiX tool”, InfoWorld,
April 5, 2004, http:/ /www.infoworld.com/article/04/04/05/HNwintool_1.html

The League for Programming Freedom (1991): Against Software Patents, February
28, 1991, available at http:/ /Ipf.ai.mit.edu/Patents/against-software-patents.html

REFERENCES e 241

Leonard, Andrew (2000a): “BSD Unix: Power to the people, from the code”, Sa-
lon.com May 16, 2000, available at
http:/ /dir.salon.com/tech/fsp/2000/05/16 / chapter_2_part_one/index.html?pn=1
Leonard, Andrew (2000b): “License to be good”, Salon.com September 22, 2000,
available at
http:/ /dir.salon.com/tech/col /leon/2000/09 /22 /licenses/index.html?pn=1
Livingston, Brad (2000): “Is Microsoft’s change in Kerberos security a form of ‘em-
brace, extend, extinguish’?”, InfoWorld, available at
http:/ /archive.infoworld.com/articles/op /xml/00/05/15/0005150plivingston.xml
Majerus, Laura A. (2003): “Court Evaluates Meaning of “Derivative Work” in an
Open Source License”, FindLaw.com.
Malcolm, Jeremy (2003): “Problems in Open Source Licensing”, a paper presented at
Australia's national Linux conference, January 24, 2003, available at
http:/ /www.ilaw.com.au/public/licencearticle.html
Markham, Gervase (2004): “Relicensing help wanted”, July 14, 2004,
http:/ / weblogs.mozillazine.org/gerv/archives/005992.html

McCue, Andy (2004): “Gartner: Re-negotiate software license deals now”, News.com,
November 23, 2004.

Metzger, Axel (2004): “Free Content Licenses under German Law”, talk given at the
Wissenschaftskolleg, Berlin, June 17, 2004, available at
http:/ /lists.ibiblio.org/ pipermail / cc-de /2004-July /000015.html

Microsoft (2003a): Microsoft Shared Source Initiative Frequently Asked Questions,
available at
http:/ / www.microsoft.com/resources/sharedsource / Initiative/ FAQ.mspx

Microsoft (2003b): Shared Source Licensing Programs, available at
http:/ /www.microsoft.com/resources/sharedsource/ Licensing / default.mspx

Microsoft (2003c): Software Assurance, available at
http:/ /www.microsoft.com/licensing / programs/sa/

Moglen, Eben (2001a): Free Software Matters, Enforcing the GPL I, Linux User, avail-
able at http:/ /emoglen.law.columbia.edu/ publications/lu-12.html

Moglen, Eben (2001b): Free Software Matters, Enforcing the GPL II, Linux User,
available at http:/ /emoglen.law.columbia.edu / publications/lu-13.html

Morrison & Foerster (2000): “Diplomatic Conference Votes to Maintain Status Quo
Regarding Software Patents in Europe Pending Issuance of a New Software Patent Di-
rective by the European Union”, Legal Update, November 2000, available at
http:/ /www.mofo.com/news/updates/ files /update152.html

Mozilla Relicensing FAQ (2004): http:/ /www.mozilla.org/MPL / relicensing-
faq.html

REFERENCES e 242

Mundie, Craig (2001): “The Commercial Software Model and Sustainable Innova-
tion”, May 16, 2001, available at
http:/ /www.microsoft.com/resources/sharedsource/Initiative / speeches/ mundie_m
odel.mspx
MySQL (2001): “FAQ on MySQL vs. NuSphere Dispute”, 13.7.2001
http:/ /www.mysql.com/news/ article-75.html
MySQL (2004a): “MySQL Licensing Policy”,
http:/ /www.mysql.com/company /legal /licensing /
MySQL (2004b): “FLOSS License Exception v0.2”,
http:/ / www.mysql.com/company /legal / licensing / foss-exception.html, 15 July 2004.
Nature (2001): “Future e-access to the primary literature”, Nature, web debate,
http:/ /www.nature.com/nature/debates/e-access/
Netcraft (2004): Web Server Survey, available at
http:/ /news.netcraft.com/archives/web_server_survey.html
Netscape (1998): “Netscape announces Mozilla.org, a dedicated team and web site
supporting development of free client source code”, press release, February 23, 1998
Novell (2004): “NovellSupports Enterprise Linux Customers With New Linux In-
demnification Program”, 13th January 2004, available at http:/ /www.novell.com/
OneStat (2003a): “Search Engine Ratings”, press release, May 12, 2003,
http:/ /www.onestat.com/html/aboutus_pressbox21.html
http:/ / www.onestat.com/html/aboutus_pressbox23.html
OneStat (2003b): “Microsoft’s Windows dominates the OS market on the web ac-
cording to OneStat.com”, press release, September 24, 2003,
http:/ / www.onestat.com /html/aboutus_pressbox24.html
OneStat (2004): Microsoft's Internet Explorer global usage share is 93.9 percent ac-
cording to OneStat.com”, press release, May 28, 2004,
http:/ /www.onestat.com/html/aboutus_pressbox30.html
Open Source Development Labs (2003): “Linux Legal Defense Fund FAQ”. Available
at http:/ /www.osdl.org/
Open Source Development Labs (2004): “OSDL to Support Enhancements to Linux
Kernel Development Process”, 24th May 2004. Available at http:/ /www.osdl.org/
Open Source Initiative (1999): “History of the OSI”,
http:/ /www.opensource.org/docs/history.php
Open Source Risk Management (2004a): “OSRM Certifies Linux Kernel Free of
Copyright Infringement” 19th April 2004. Available at
http:/ /www.osriskmanagement.com /

REFERENCES e 243

Open Source Risk Management (2004b): “Results of First-Ever Linux Patent Review
Announced”, 2nd August 2004. Available at http:/ / www.osriskmanagement.com/

OpenSSH (2001): “SSH.COM Trademark Dispute”, http:/ /www.openssh.org/ssh-
dispute/

OpenSSH (2004): “Project History and Credits”,
http:/ /www.openssh.com /history.html

Perens, Bruce (2002): “MS “Software Choice’ scheme a clever fraud”, The Register, 9th
August, 2002,
http:/ /www.theregister.co.uk /2002 /08 /09 / ms_software_choice_scheme/

Pournelle, Jerry (1987): “Back to Work!”, BYTE, Volume 12, No 4.

Pournelle, Jerry (1988): “Computing at Chaos Manor Life after Las Vegas”, BYTE,
Volume 13, No 2.

Proffitt, Brian (2004): “XFree86 License Causes Distros to Rethink Plans”, LinuxTo-
day, February 18, 2004, http:/ /linuxtoday.com/ developer /2004021803026 NWDTLL

Ravicher, Dan (2002): “Software Derivative Work: A Circuit Dependent Deter-
mination”, available at http:/ / www.pbwt.com/ Attorney/ files / ravicher_1.pdf

Raymond, Eric S. (2002): “Geeks with Guns!”, available at
http:/ /www.catb.org/ ~esr/ geeks-with-guns/

Raymond, Eric S. and Landley Rob (2003): “OSI Position Paper on the SCO-vs.-IBM
Complaint”, available at http:/ / www.opensource.org/sco-vs-ibm.html, accessed 20
September 2003.

Red Hat (2004a): “Red Hat Announces Open Source Assurance to Safeguard Cus-
tomer Investment”, 20th January 2004, available at http:/ /www.redhat.com/.

Red Hat (2004b): “Red Hat, Inc. Statement of Position and Our Promise on Software
Patents”, available at http:/ /www.redhat.com/legal / patent_policy.html

Roblimo (2004): “Wikipedia Founder Jimmy Wales Responds”, Slashdot, 28 July
2004. Available at http:/ / www.slashdot.org/

Rose, Dan (2004): “DOS® Abandonware Utilities -- Disk Copy-Protection Removal
Software”, http:/ /home.pmt.org/~drose/aw-dos-37.html

Rosen, Lawrence (2001): “Naming Open-Source Software”, Linux Journal, October 1,
2001

Rosen, Lawrence (2002): “Allocation of the Risks”, Linux Journal, September 1, 2002

Rosen, Lawrence (2004): “Patents in an open source world”, NewsForge, July 27, 2004

Salus, Peter H. (1994): “The history of Unix is as much about collaboration as it is
about technology”, BYTE.com, November 1994.

REFERENCES e 244

Samuelson, Pamela et al (1995): Amicus curiae, Lotus v. Borland. December 1995.
Available at http:/ /www-swiss.ai.mit.edu/6805/articles/int-prop/lotus /law-prof-
amicus.txt

ScanSSH (2004): “SSH usage profiling”, http:/ /www.openssh.org/usage/

Schneier, Bruce (2001): “The Futility of Digital Copy Prevention”, Crypto-Gram
Newsletter, May 15, 2001 http:/ / www.schneier.com/ crypto-gram-0105.html

Shankland, Stephen (2004a): “MySQL addresses open-source license problem”,
News.com, March 12, 2004.

Shankland, Stephen (2004b): “IBM pledges no patent attacks against Linux”,
News.com, 4th August 2004.

Singer, Michael (2004): “Apple Sees a Shift in Developer Profiles”, InternetNews,
available at http:/ / www.internetnews.com/ent-news/ article.php /3335591

Sleepycat (2004): “Sleepycat Software Product Licensing “,
http:/ / www.sleepycat.com/download /licensinginfo.shtml

Stallman, Richard (1986): Lecture at Kungliga Tekniska Hogskolan (Royal Institute
of Technology), Stocholm, Sweden, 30" October 1986, available at
http:/ /www.gnu.org/ philosophy / stallman-kth.html

Stallman, Richard (1999a): “Why you shouldn't use the Library GPL for your next li-
brary”, http:/ / www.gnu.org/ philosophy / why-not-lgpl.html

Stallman, Richard (1999b): “Saving Europe from Software Patents”, Linux Today,
available at http:/ / features.linuxtoday.com /news_story.php3?1tsn=1999-05-16-003-05-
NW-LFE

Stapleton, Lisa (2004): “Stallman: Accusatory Report Deliberately Confuses”, Linux
Insider 27" May 2004, available at http:/ /www linuxinsider.com/story /34069.html

Stone, Brad (2004): “Nickels, Dimes, Billions”, Newsweek, web exclusive, 2nd August
2004

SUN (2005): “Sun Grants Global Open Source Community Access to More than 1,600
Patents”, January 25, 2005, available at
http:/ /www.sun.com/smi/Press/sunflash /2005-01/sunflash.20050125.2. html

Tai, Andy (2001): “The History of the GPL”, available at http:/ / www.free-
soft.org/gpl_history/

Talk, Chuck (2004): “An Interview with Matt Asay of Novell”, May 31, 2004,
http:/ / rootprompt.org/ article.php3?article=6940

Tomboy (1998): “Reinitializing Lotus 1-2-3 DOS versions 2.01, 2.3, and 3.1”,
http:/ /fravia.anticrack.de/123dos.htm

Torvalds, Linux and Cox, Alan (2003): An open letter to the European Parliament,
available at http:/ / www.effi.org/ patentit/ patents_torvalds_cox.txt

REFERENCES e 245

TrollTech (2003): “Licenses for Code Used in Qt”
http:/ /doc.trolltech.com /3.1 /licenses.html

TrollTech (2004): “Qt Open Source Edition Licensing”,
http:/ / www.trolltech.com/ products/ qt/ opensource.html

US vs. Microsoft (2003): United States v. Microsoft — Current Case, available at
http:/ /www.usdoj.gov/atr/cases/ ms_index.htm

Wheeler, David A. (2004): “Make Your Open Source Software GPL-Compatible. Or
Else”, http:/ / www.dwheeler.com/essays/ gpl-compatible.html

Zawinski, Jamie (2003): “Emacs Timeline”, available at
http:/ /www jwz.org/doc/emacs-timeline.html

Zimran, Ahmed (2001), “Interview with Sleepycat President and CEO Michael Ol-
son”, http:/ /www.winterspeak.com/columns/102901.html, 29.10.2001

Court Cases, Official Documents and Licenses

Cases — United States

Computer Associates International v. Altai (US Court of Appeals, 2nd Circuit, June
22,1992)

Diamond v. Diehr (US Supreme Court, March 3, 1981)
Gottschalk v. Benson (US Supreme Court, November 20, 1972)
Litchfield v. Spielberg (US Court of Appeals, 9th Circuit, July 6, 1984)

Lotus Development Corp. v. Borland International Inc. (US Court of Appeals, 1st
Circuit, March 9, 1995)

In Re Alappat (US Court of Appeals, Federal Circuit, July 29, 1994)

Parker v. Flook (US Supreme Court, June 22, 1978)

Progress Software Corp. v. MySQL AB (filed in US District Court for the District of
Massachusetts, 2002 — settled in November 7, 2002).

SCO Group v. International Business Machines, Inc. (filed in US District Court for
the District of Utah, 2003 — ongoing and extensively covered at e.g.
http:/ /www.groklaw.net/)

Stac Electronics v. Microsoft Corp. (filed in US District Court for the Central District
of California, 1993 - settled in June 1994).

United States v. Manzer (US Court of Appeals, 8th Circuit, October 27, 1995)

United States v. Microsoft (filed in US District Court for the District of Columbia,
1999 — case settled in November 1, 2002)

REFERENCES e 246

Unix System Laboratories, Inc vs. Berkeley Software Design, Inc. (filed in US District
Court for the District of New Jersey, 1992 — settled in February 4, 1994).

Vault Corp. v. Quaid Software Ltd. (US Court of Appeals, 5th Circuit, June 22, 1988)

Whelan Associates Inc. v. Jaslow Dental Laboratory, Inc,, et al. (US Court of Ap-
peals, 3rd Circuit, August 4, 1986)

Cases — Europe

European Patent Office, Board of Appeal, T 0208/84, VICOM, July 15, 1986
European Patent Office, Board of Appeal, T 1173/97, IBM, July 1, 1998

Landgericht Miinchen I, May 19, 2004. Available at
http:/ /www.jbb.de/urteil_lg_muenchen_gpl.pdf

Finnish Supreme Court, KKO 1998:91, August 21, 1998
Finnish Supreme Court, KKO 2003:88, November 10, 2003

Official documents

Berne Convention for the Protection of Literary and Artistic Works, Paris Act of July
24,1971, as amended on September 28, 1979 (Berne Convention)

Conference of the Contracting States to Revise the 1973 European Patent Convention
(Munich, 20 to 29 November 2000) (EPC 2000)

Convention on the Grant of European Patents of 5 October 1973 (European Patent
Convention)

Council Directive 91/250/EEC of 14 May 1991 on the Legal Protection of Computer
Programs (Software Copyright Directive)

Council Directive 93/13/EEC of 5 April 1993 on unfair terms in consumer contracts

(Consumer Contract Directive)

Directive 99/44/EC of the European Parliament and of the Council of 25 May 1999
on certain aspects of the sale of consumer goods and associated guarantees (Consumer
Goods and Guarantees Directive)

Examination Guidelines for Computer-Related Inventions, February 28, 1996 (US
Software Patent Guidelines)

Guidelines for Examination in the European Patent Office. Effective as 1 June 1978.
Guidelines for Examination in the European Patent Office. December 2003 edition.

Memorandum of the Constitutional Law Committee of the Finnish Parliament
7/2005, 10 March, 2005

REFERENCES e 247

Munich Diplomatic Conference for the Setting Up of a Europen System for the Grant
of Patents (Munich, September 10 to October 5, 1973).

Promoting Innovation Through Patents - Green Paper on the Community pa-tent
and the patent system in Europe, COM(97) 314, June 1997

Proposal for a directive of the European Parliament and of the Council on the pat-
entability of computer-implemented inventions, Brussels, 20.02.2002, COM(2002) 92
final. (Software Patent Directive Proposal)

WIPO Adpvisory Group of Governmental Experts on the Protection of Computer
Programs, Geneva, March 8-12, 1971. Copyright, Volume 7, Issue 3, pp. 35-40.

WIPO Model provisions on the protection of computer software, Geneva, 1978.
(WIPO Sui Generis Proposal)

WIPO Group of Experts on the Legal Protection of Computer Software (Geneva,
June 13 to 17, 1983), Copyright, Volume 19, Issue 9, 1983, pp. 271-279

WIPO Group of Experts on the Copyright Aspects of the Protection of Computer
Software, Geneva, February 25 to March 1, 1985. Copyright, Volume 21, Issue 4, pp. 146-
149.

WIPO Proposal by Argentina and Brazil for the Establishment of a Development
Agenda for WIPO, Geneva, August 24, 2004. (WIPO Development Agenda Proposal)

WTO Treaty on Trade Related Aspects of Intellectual Property Rights, Morocco,
April 15, 1994 (TRIPS)

Definitions and policies

Debian Social Contract 1.1 (http:/ /www.debian.org/social_contract.html)

The Free Software Definition (http:/ /www.gnu.org/ philosophy / free-sw.html)
Open Source Definition (http:/ / www.opensource.org/docs/ definition.php)
W3C Patent Policy (http:/ /www.w3.org/Consortium / Patent-Policy /)

Licenses (all except the Unix License can be found at http:/ / www.opensource.org/)

Academic Free License

Apache License 2.0

Artistic license

BSD license

Common Public License

GNU General Public License (GPL)

REFERENCES e 248

GNU Lesser General Public License (LGPL)
MIT license

Mozilla Public License 1.1 (MPL)

Open Software License

Qt Public License (QPL)

Sleepycat License

Unix License (1974): “Software Agreement between Western Electric Company, In-
corporated and Katholieke Universiteit effective as of 1st December 1974”. Available at
http:/ /ecm.bell-labs.com/ecm/ cs/who /dmr/licenses / 6thEdlicence.pdf

INDEX e 249

INDEX

Adobe 95
Academic Free License 121
Advanced Micro Devices (AMD) 104
Affero Public License 138
Amazon 138
Amdahl 90
Amstrad 89
antitrust law see competition law
Apache 2, 17, 21, 37, 59, 121, 140, 165
License 121, 152-153, 180
Apple 2, 37, 39, 89-90, 121, 165, 176, 194
Darwin 201-202
Mac OS 19, 192-194, 200-202, 204-205
Apple Public Source License 121, 195,
201
Application Service Providing (ASP) 137
Applied Data Research (ADR) 82-83
Artistic License 120-121, 154
Atari 192
AT&T 30-32, 35, 90, 192
Autodesk 95
Axmark, David 211
Ballmer, Steve 131
Band, Jonathan 88
Bakels, Reinier 184
Berkeley Software Design 32
Berkeley Software Distribution (BSD) 30-
32, 35-36, 193, 200-202
FreeBSD 33, 138, 200
OpenBSD 33, 190, 200
NetBSD 33, 200
BSD License 33, 151-152, 181, 195, 201,
209
Berkeley Softworks 196
GeoWorks 196
Besen, Stanley 62
Blind, Knuth 184
Borland 90-91

Braunstein, Yale M. 64
Broderbund Software 90
Bull 89
business history
continuing approach 6-7
Business Software Alliance (BSA) 61, 110
BSD see Berkeley Software Distribution
Calabresi, Guido 166179
Caldera 35
Campbell-Kelly, Martin 13, 23
Chandler, Alfred D. 6
Chesbrough, Henry W. 76
Christensen, Clayton M. 6
closed source see proprietary
Coase, Ronald H. 75
Commodore 192
Common Public License (CPL) 121, 142-
143, 150, 180
community norms see social norms
Compaq 90
compatibility
definition of 54-56
GPL-compatiblity 140
and fragmentation 55-56
between licenses 115, 123, 159, 162-163
competition law
IBM antitrust investigation 22
and intellectual property 78-80
Computer Associates 177
CONTU (US National Commission on
New Technological Uses of Copyrighted
Works) 86-87
copy protection see technical protection
copyleft see reciprocity
copyright
compensation mechanisms 65-67
Computer Associates v. Altai 90-91
derivative works 92-93, 123-138, 162

INDEX e 250

economics of 58-69
extent 91-93
first software copyrights 84
incentive theory 58-60
infringement risk 167-168
interoperability debate 87-91
liability 93
moral rights 93, 111-112, 114, 123, 162
modification see derivative works
optimal limits 62-65
reform proposals 67-69
software copyright directive 89-90
Creative Commons 146, 154-161
Davis, Randall 126
Dedrick, Jason 193
Defense Advanced Research Projects
Agency (DARPA) 31
derivative works see copyright
Digital Equipment Corporation (DEC) 90
Digital Research 88, 196
CP/M 88
GEM 196
Drucker, Peter 46
dual licensing 206-217
Electronic Frontier Foundation 43
economics
network approach 7-8
Emacs 33-34
Eng, Eirik 212
Fabry, Bob 31
Fershtman, Chaim 122
Fink, Martin 43
Foray, Donique 77
Ford, Nelson 25
Forrester Research 38
Free Software Foundation 31, 33-34, 43,
80, 120, 129, 135, 147, 152, 167, 178,
201-203, 211, 218
Fujitsu 89
Gandal, Neil 122
Gates, Bill 40
Gnome 203

GNU/Linux see Linux
GNU
Compiler Collection license exception
133
Crypto license exception 148-149
Emacs 34
General Public License (GPL) 9, 34-36,
124-141, 147-150, 168, 172, 178, 180-
181, 202, 211-212, 214
Lesser General Public License (LGPL)
146-150, 180
licenses 119-120, 122
Manifesto 33
Project 33, 41, 202
Goetz, Marty 83
Google 19, 138
Gosling, James 33-34
Gottinger, Hans W. 50
GPL see GNU General Public License
Guile 148
hacker 35, 40, 218
Hayek, Friedrich A. 72
Hewlett-Packard (HP) 21, 37, 39, 104,
164-165, 174 176
Hollerith, Herman 22
Hubbard, Jordan 201
Humprey, Watts S. 22
IBM 2, 14, 16-17, 20-23, 35, 37-39, 78, 89-
90, 95, 104, 121, 142, 165, 176-177, 199,
203
AIX 204
0S5/2196
unbundling decision 21-24
IDC 18, 61
incompatibility see compatibility
indemnification 145-146, 169-170
Intel 104
intellectual property rights (IPR)
see also copyright and patents
and competition policy 78-80
balancing of 105-110
definition of 3-4

INDEX e 251

infringements as accidents 166-165
infringement risks 173-174, 178-179,
186-187
insurance 170-171
law and economics of 10
management of 3, 60, 178-179, 221-222
social policy 3, 173-174, 180, 183-186,
222-224

innovations
an open model 75-78, 163
in software industry 69-71
and patents 71-73
means to appropriate 74-75

interoperability see compatibility and
copyright

Jaeger, Till 117, 134

Jobs, Steve 200

Joy, Bill 30

K Desktop Environment (KDE) 203, 213-
214

Katoh, Masanobu 88

Landes, William M. 63, 65

law
comparative law 8-9
and economics 7-8, 10

Lemley, Mark A. 74

Leonard, Andrew 123

Lerner, Josh 122, 214

Lessig, Lawrence 155, 221

Levin, Richard C. 72

LGPL see GNU Lesser General Public

License

Liebowitz, Stan 50, 63, 79

Linux 2, 17-18, 30, 35-36, 58-59, 80, 135-
136, 165, 168, 174-176, 178, 192-194,
199, 202-205, 211, 213, 216

licensing
see also open source and proprietary
software
definition of 4
and warranties 5, 123, 146, 158-159,
162, 169-170

Locke, John 59
Lotus 89-91, 101
Mac see Apple
Machlup, Fritz 59, 71
Margolis, Stephen E. 50, 79
Massachusetts Institute of Technology
(MIT) 33, 41
MIT License 152
Mattei, Ugo 10
McKusick, Marshall Kirk 31
Metzger, Axel 117, 134
Microsoft 1, 14, 18-20, 25, 37, 40, 47, 73,
78-80, 89-90, 95, 104, 130-131, 165, 176,
192-194, 196-201, 218
and GPL 130-131, 198
and open source 198
MS/DOS 88, 192, 196
Office 20
Shared Source 197-198
Windows 18-20, 192-193, 196-200, 204-
205, 211
Miller, Robin 219
MIT see Massachusetts Institute of Tech-
nology
MontaVista 203
Mozilla 140
Mozilla Public License 149-151, 180
Mundie, Craig 1
MySQL 2, 17, 21, 120, 134-135, 137, 140-
141, 165, 206, 208, 211-212
Netscape 1-2, 36, 149
NewsForge 219
NeXT 200
NeXTStep 200
Nichols, Kenneth 184
Nord, Haavard 212
North, Douglass C. 42, 78
Novell 21, 33, 35, 90, 174, 176
Olivetti 89
Olsen, Michael 210
O'Mahony, Siobhan 116
open innovation

INDEX e 252

Open Software License (OSL) 121, 138,
144-146, 150, 170
open source
academic study of 10
benefits and challenges 38-39
community 42-44, 178
companies 177
definition of 4
development control 189-191
forking 190, 206, 212
licenses categorized 117-121
movement see community
most popular licenses 121-122
pricing of 188-189
public policy initiatives 46-48
Open Source Definition 4, 113-116, 137,
163, 188
Open Source Development Labs 175
Open Source Initiative 30, 36-37, 43-44,
113, 121, 211, 218
history of 36-37
Open Source Risk Management Inc 168
OpenSSH 190-191
Oracle 14, 17, 37, 39, 95, 203
OMReilly, Tim 36, 138
Pbt Consultants 184
patents
and GPL 139-140
and innovation 71-73
and open source 123
and software development 182-183
as strategic assets 73-74, 171-172
extent 99-101
first software patents 82-83
historical evolution 94-98
infringement risk 168-169, 185-186
international policy 98-99
statistics 175-176
termination clauses 180-181
Perens, Bruce 36
Perl 17
personal computer (PC) 14, 17, 24-25,

104-105, 192-193
PHP 17, 131
piracy 61-62, 68
Plant, Arnold 61
Posner, Richard A. 63, 65, 79
Progress Software Corporation 134-135
Gemini 134-135
proprietary software
licensing models 26-27, 189
source code distribution 29-30
public domain
Public Software Library (PsL) 25
Pugh, Emerson W. 21
Python 140
Q Public License (QPL) 213-214
Raskind, Leo 62
Ravicher, Dan 126
Raymond, Eric S. 1, 36, 42-46, 67
reciprocity (copyleft)
history of 34
definition of 117-119
standard 146-151
strong 124-146, 214
Red Hat 165, 174, 176
Riis, Thomas 62
Rosen, Lawrence E. 144-146
Samuelson, Pamela 221
SCO 35, 80, 164, 174-176
Seattle Software Works 88
Seltzer, Margo 209
Shapiro, Carl 74
shareware 24-25
Shy, Oz 50, 215
Slashdot 219
Sleepycat Software 21, 206, 208-210
BerkeleyDB (BDB) 209-210
Sleepycat License 121, 209-210, 214
social norms 9-10, 116-117, 161
software business
product model 20-21, 23, 26-28
service model 20-21, 27-28
definiton of models 19-21

INDEX e 253

Software Choice 47
software copyright see copyright
software industry
academic study of 11
definition of 4
historical overview 13-15
innovation in 69-70
market regions 16
market size 15-16
software patents see patents
software products
as capital goods 52
as components in systems 54-55
as information goods 51-52
as public goods 53
lock in 56-57
network economics approach 50, 56-
58, 190-191
Sony 104
Sourceforge 121-122, 214
SSH Communications Security 190-191
Stanford University 155
Stac Electronics 73
Stallman, Richard 33-34, 36, 41-46, 89,
120, 147, 178, 202, 218-219
Storage Technology 90

SUN Microsystems 95, 104, 121, 177, 203-

204
Sun Public License 121
Sun Industry Standards Source Li-
cense 121
Solaris 177, 204
technical protection 22-23, 101-105

anti-circumvention regulation 102-103

trusted computing 104-105, 199-200
Thisse, Jacques-Francois 215
Tirole, Jean 122, 214
Torrisi, Salvatore 16, 74

Torvalds, Linus 9, 35, 41-42, 44, 135-137,

180, 202
Trolltech 21, 212-214
Qt212-213

University of California (at Berkeley) 30-
31, 41, 120, 152, 209
University of Helsinki 41
Unix 24, 30-33, 41, 55, 80, 192-193, 199,
201-202, 204, 211, 213
Unix System Laboratories 32-33
Wall, Larry 154
Watson, Thomas J. Sr. and Jr. 22
West, Joel 193
Whitlow, Duane 83
Whitlow Computer Systems 83
Widenius, Michael 211
Windows see Microsoft
World Intellectual Property Organiza-
tion (WIPO) 87, 110, 221, 223
software model law proposal 85-86
World Trade Organization (WTO) 99,
223
Treaty on Trade Related Aspects of
Intellectual Property (TRIPS) 99
WordPerfect 90
X11 203
Yahoo 138
Ylonen, Tatu 190

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200034002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 822.047]
>> setpagedevice

